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Abstract

The measurement of inclusive cross sections of dijet production in the collisions of two
quasireal photons obtained with the DELPHI detector at LEP2 is presented. Data on
dσ2j/dη, dσ2j/dET , dσ2j/dx and jet profiles for jets with ET > 5 GeV are compared to
PYTHIA and HERWIG Monte Carlo event generators. Special attention is paid to the
effects of soft particles coming from photon remnants.
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Chapter 1

Introduction

The photon is a gauge boson of the electromagnetic interaction. It is considered to be a fun-
damental object without the inner structure. It has a point-like coupling to charged leptons
and its interaction is described with a great precision by the quantum electrodynamics.

Photon interaction gets complicated due to the fact that the photon fluctuates into qq
pair which can further interact strongly. If the characteristic time of the fluctuation is much
larger than the interaction time the photon behaves approximately as a beam of almost
collinear and mutually noninteracting partons. Such interaction of photon is called resolved
interaction but for simplicity we sometimes speak of a resolved photon.

The abstraction from the genesis of the photon fluctuation brings the term photon struc-
ture into the description of the photon interactions. Parton distribution functions (PDF)
of the photon are introduced to describe its hard collisions. The structure of the photon is
referred to in the sense of dynamic behaviour in these collisions rather than in the sense of
photon constituents.

Parton distribution functions of the photon can be investigated in several types of experi-
ments. Photon structure is studied in deep inelastic eγ scattering realized in e+e− collisions.
Independent measurements come from large-pT jet production analysis in γγ and γp scat-
tering. Information on the PDF is also extracted from the heavy-quark production in γp
and γγ collisions. Our knowledge about the structure of the photon comes from experiments
at PETRA and HERA colliders at DESY, TRISTAN at KEK, PEP at SLAC and LEP at
CERN.

The subject of this thesis is a study of two-photon processes leading to large-pT jet
production. The advantage of this process over the deep inelastic scattering on the photon
comes from the fact that the dijet production is sensitive to the gluon content of the photon.
The differential cross sections for the dijet production in collisions of quasi-real photons were
measured and analysed using the DELPHI detector at LEP. The properties of the jets in
two-photon collisions were studied and their shapes and profiles were investigated as well.
Preliminary results of this thesis were reported at the conference Photon 2001 [1].

The thesis is organised as follows. The next chapter is devoted to theoretical aspects of

3



4 CHAPTER 1. INTRODUCTION

γγ collisions at e+e− collider and dijet production in these collisions. An overview of the
available experimental results on photon structure is presented in Chapter 3. The description
of the DELPHI detector is given in Chapter 4. Monte Carlo event generators and simulation
technique are discussed in Chapter 5. The analysis is described in Chapter 6. The main
results on the differential cross sections and jet profiles can be found in Chapter 7. The
discussion of results is given in Chapter 8. Technical details of the unfolding procedure are
addressed in Appendix B.

The system of units h̄ = c = 1 is used throughout this text.



Chapter 2

Description of γγ collisions

In this chapter the elements of the theory of γγ collisions at e+e− collider are reviewed. The
formalism of photon structure functions and parton distribution functions of the photon is
presented.

At present the interactions of the photon are studied at e+e− and e± p colliders where
lepton beams are intense sources of virtual1 photons. The spectrum of these photons is
described by the Equivalent Photon Approximation (EPA) [2]

fγ/e(z, Q
2) =

α

2πQ2

[

1 + (1 − z)2

z
− 2m2

ez

Q2

]

(2.1)

where z denotes the fraction of the electron energy carried by the photon and Q2 stands for
the photon virtuality.

The integrated form of the photon flux known as Weizsäcker-Williams formula [3, 4] gives
the number of virtual photons in some interval of virtualities (P 2

min, P
2
max).

fγ/e(z, P
2
min, P

2
max) =

α

2π

[

1 + (1 − z)2

z
ln
P 2

max

P 2
min

− 2m2
ez(

1

P 2
min

− 1

P 2
max

)

]

(2.2)

The minimum photon virtuality P 2
min is given by P 2

min = m2
ez

2/(1 − z) while the maximum
virtuality P 2

max = (1 − z)E2θ2
max is limited by the maximum polar angle θmax at which

electrons are allowed to scatter2 and the electron beam energy E.
The photons frequently interact with each other and these collisions were a dominant

process at LEP2 as illustrated by Fig. 2.1 where total γγ cross section is compared with
other processes. The interaction can be schematically written

1Flux of real photons might become available at a future linear e+e− collider where a beam of real photons

could be prepared by Compton backscattering of laser photons.
2For experiments where scattered electrons may escape the detector near the beam pipe the angle θmax

corresponds to the the lower acceptance of electron detectors in polar angle. This yields upper limit on

virtuality of photons in so-called anti-tagged photon collisions.
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Figure 2.1: Comparison of the cross section for two-photon collisions with other process in
the LEP energy range. Cross sections of hadronic final-state channels as a function of

√
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is shown for two-photon interactions with small final-state mass, s-channel γ/Z interaction,
W+W− pair production, ZZ production and Higgs production hypothesis (mH = 114 GeV).
Taken from M. Kienzle-Focacci’s talk at LEP Fest 2000.
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e+e− → e+e−γ∗γ∗ → e+e−X (2.3)

and is depicted in Fig. 2.2 where kinematical variables are introduced. X denotes final state
of γγ collision with an invariant mass W given by W 2 = (p + q)2. Electron and positron
radiate photons with virtualities P 2 and Q2 given by the difference of lepton four-momenta
p = k − k

′

and q = l − l
′

respectively.

P 2 = −p2 = −(k − k
′

)2 > 0 (2.4a)

Q2 = −q2 = −(l − l
′

)2 > 0 (2.4b)

Final state electron and positron are typically scattered by a small angle and escape unde-
tected along the beam pipe. In this case both virtualities P 2 ∼ 0 and Q2 ∼ 0 are small
and scattering of two quasi-real photons takes place. When one of the virtualities becomes
large, a quasi-real photon is probed by a virtual photon. Such process will be denoted as
γ∗γ scattering. It is the kinematical range of the deep inelastic scattering (DIS). The virtu-
alities of incoming photons are reflected in the experimental signature of the events which
are classified as untagged, single-tagged or double-tagged.

q2

p2

e−(k;E)

e+(l;E)

e−(k
′

; ~k′, θk
′ )

X(W )

e+(l
′

;~l′ , θl
′ )

Figure 2.2: Kinematics of two-photon collision.

The basic quantity describing the structure of the photon are quark, antiquark and gluon
distribution functions qi(x,M), qi(x,M) and g(x,M) which depend beside the momentum
fraction x also on the factorisation scale M . The main difference between hard collisions of
hadrons and photons concerns the fact that quark and gluon distribution functions of the
photon

Σ(x,M) ≡
nf
∑

i=1

(qi(x,M) + qi(x,M)) , (2.5)

qNS(x,M) ≡
nf
∑

i=1

(

e2i − 〈e2〉
)

(qi(x,M) + qi(x,M)) (2.6)



8 CHAPTER 2. DESCRIPTION OF γγ COLLISIONS

satisfy by the system of coupled inhomogeneous evolution equations

dΣ(M)

d lnM2
= δΣkq(M) + Pqq(M) ⊗ Σ(M) + Pqg(M) ⊗ g(M), (2.7)

dg(M)

d lnM2
= kg(M) + Pgq(M) ⊗ Σ(M) + Pgg(M) ⊗ g(M), (2.8)

dqNS(M)

d lnM2
= δNSkq(M) + PNS(M) ⊗ qNS(M), (2.9)

where δNS ≡ 6nf (〈e4〉 − 〈e2〉2) and δΣ = 6nf〈e2〉. The splitting functions admit expansion
in powers of αs(M)

kq(x,M) =
α

2π



k(0)
q (x) +

αs(M)

2π
k(1)

q (x) +

(

αs(M)

2π

)2

k(2)
q (x) + · · ·



 , (2.10)

kg(x,M) =
α

2π





αs(M)

2π
k(1)

g (x) +

(

αs(M)

2π

)2

k(2)
g (x) + · · ·



 , (2.11)

Pij(x,M) =
αs(M)

2π
P

(0)
ij (x) +

(

αs(M)

2π

)2

P
(1)
ij (x) + · · · . (2.12)

where the lowest order inhomogeneous splitting function k(0)
q (x) = (x2 + (1 − x)2) as well

as the homogeneous splitting functions P
(0)
ij (x) are unique, whereas all higher order splitting

functions k(j)
q , k(j)

g , P
(j)
kl , j ≥ 1 depend on the choice of the factorisation scheme (FS). The

equations (2.7-2.9) can be recast into evolution equations for qi(x,M), qi(x,M) and g(x,M)
with inhomogeneous splitting functions k(0)

qi
= 3e2

ik
(0)
q .

The presence of the inhomogeneous terms on the r.h.s. of (2.7-2.9) implies that their
general solutions can be written as a sum of a particular solution of the full inhomogeneous
equations and a general solution of the corresponding homogeneous ones, called hadron-like
(or VMD) part. A subset of the former resulting from the resummation of contributions of
multiple parton emissions off the primary QED vertex γ → qq and vanishing at M = M0,
are called point-like (or anomalous) solutions. The separation of PDF of the photon into
their point-like and hadron-like parts is thus inherently ambiguous. For instance, the two
widely used sets of PDF of the photon, SaS 1D and SaS 2D (see 2.1) differ primarily by the
choice of M0: M0 = 0.6 GeV for SaS 1D, whereas M0 = 2 GeV for SaS 2D. As a result, SaS
2D has much bigger hadron-like part than SaS 1D.

In the case of a hard collision of two quasi-real photons the blob in Fig. 2.2 can be
calculated in perturbative QCD. Hard collisions of two photons in e+e− collisions have in
general three classes of contributions: direct, single-resolved and double-resolved. Examples
of relevant diagrams are depicted in Fig. 2.3. The direct process (Fig. 2.3a) is an interaction
in which two photons couple directly to qq pair with large-pT or a heavy QQ pair. In the
single-resolved process (Fig. 2.3b) the large-pT pair of partons comes from the collision of one
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of the photons with a parton from the other one. The double-resolved process (Fig. 2.3c)
is an interaction of partons from both photons. In the leading order of QCD the direct
interaction leads just to two jets in the final state. In the single-resolved and double-resolved
contributions one or two additional spectator jets may be seen. Their origin is in the remnant
of the photon.

e−

e+

e−

q

q

e+

e−

e+

e−

q

q

e+

e−

e+

e−

g

g

e+

Figure 2.3: Direct process (a) and examples of single-resolved (b) and double-resolved (c)
processes. Blobs denote PDF of the resolved photon.

In leading order (LO) QCD the cross section for dijet production in double-resolved γγ
interaction can be written as

dσ

dy1dy2dx1dx2d cos θ?dQ2dP 2
∝ 1

s

fγ/e(y1, Q
2)

y1

fγ/e(y2, P
2)

y2

×
∑

i,j

fi/γ(x1, pT
2, Q2)

x1

fj/γ(x2, pT
2, P 2)

x2
|Mij(cos θ?)|2 (2.13)

where fγ/e(y,Q
2) is given by (2.1), s is the e+e− CMS3 energy squared and Mij(cos θ?)

3centre-of-mass
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denotes the matrix element4 for the two-parton scattering depending on the angle θ? between
incoming and outgoing partons in the centre-of-mass system of the parton subprocess. The
function fi/γ(x1,M

2, Q2) stands for the distribution function of partons i with the momentum
fraction x1 in the photon of virtuality Q2 probed at the scale M 2. In single resolved process
one of the PDFs fi/γ is replaced by the δ-function δ(1− x). Both PDFs are replaced by the
combination δ(1 − x1)δ(1 − x2) in the direct process.

Assuming the binary process as in Fig. 2.3 and massless partons, the fractions x1 and x2

can be calculated as follows

x1 =
ET1

e−η1 + ET2
e−η2

2Eγ1

(2.14a)

x2 =
ET1

eη1 + ET2
eη2

2Eγ2

(2.14b)

where ET 1 and ET 2 are the transverse energies of the outgoing partons, η1 and η2 are their
pseudorapidities defined as η = − ln tan θ/2, Eγ1 and Eγ2 are the photon energies. For direct
process both x1 and x2 are equal 1, for single resolved process one of x1 and x2 is equal 1
and the other is less than 1 and both fractions are less than 1 for double resolved process.

In practice the fractions x1, x2 are usually calculated using the formula

x1,2 =

∑2
jet=1(Ejet ± pzjet)
∑n

h=1(Eh ± pzh)
(2.15)

which is better suited for experimental conditions in anti-tagged collisions. In this case,
however, the obtained fractions are just approximations of true x1, x2. Full reconstruction
of the event kinematics needed by formula (2.14) is possible only in double-tag events.

The differential cross section in formula (2.13) depends on the gluon distribution function
in the photon g(x) and on the quark distribution functions of the photon qi(x). As it is
difficult to extract separately distribution functions of gluons and all quark flavours from
the data, it is common to use the concept of the so-called effective parton distribution
function introduced in [5]

f eff(x, ET
2, P 2) =

∑

i

(qi(x, ET
2, P 2) + qi(x, ET

2, P 2)) +
9

4
g(x, ET

2, P 2) (2.16)

The matrix elements for the most important contributions of parton-parton scattering have
similar dependence on the θ, the differential cross section (2.13) can be then approximated
as follows

dσ

dy1dy2dx1dx2d cos θ?dQ2dP 2
∝ 1

s

fγ/e(y1, Q
2)

y1

fγ/e(y2, P
2)

y2

×f
eff (x1, ET

2, Q2)

x1

f eff(x2, ET
2, P 2)

x2
|Meff(cos θ?)|2 (2.17)

4The proportionality factor depends just on the normalisation of the wave function. The invariant am-

plitudes for binary parton processes are given in Table 2 later in this chapter.
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The matrix elements Meff (cos θ?) is the same as the matrix element for the process qαqβ →
qαqβ for quarks of distinct flavour α 6= β as given in Table 2.

Process
〈|M |2〉
g4

qαqβ → qαqβ
2
9

[

2(s2 + u2)
t2

+

(

2(t2 + s2)
u2 − 1

3
4s2

ut

)

δαβ

]

qαqβ → qαqβ
2
9

[

2(s2 + u2)
t2

+

(

2(t2 + u2)
s2 − 1

3
4u2

st

)

δαβ

]

qg → qg
[(

1 − us
t2

)

− 4
9

(

s
u + u

s

)

− 1
]

gg → qq 1
6

[

u
t + t

u

]

− 3
4

[

1 − ut
s2

]

+ 3
8

qq → gg 64
9
M(gg → qq)

gg → gg 8
9

[

−33
4 − 4

(

us
t2

+ ut
s2 + st

u2

)]

− 9
16

[

45 −
(

s2

ut + t2
us + u2

ts

)]

Table 2.1: The squares of the invariant amplitudes for binary parton processes averaged over
spin and colour. The amplitudes are expressed in terms of Mandelstam variables s, t, u.

2.1 Parameterisations of the PDF of the photon

There are several parameterisations of the photon PDF on the market. They differ in various
theoretical motivations and also practical details - the set of experimental data used as an
input, the choice of the input distribution and the scale Q2

0 at which it is taken. In the
following three most common parameterisations are briefly discussed.

• GRV (Glück, Reya and Vogt [6])

GRV parametrisations are available in LO and in NLO versions. The starting distri-
bution at the input scales Q2

0 = 0.25 GeV2 (LO version) and Q2
0 = 0.30 GeV2 (NLO

version) are derived from the PDF of the pion.

• SaS (Sjöstrand and Schuler [7, 8])

There are two sets, SaS 1D and SaS 2D, at different input scales Q2
0 = 0.36 GeV2

and Q2
0 = 4 GeV2 respectively. The shape is very similar for 1D and 2D but they are

composed of different portions of VMD and perturbative parts.

• GRS ((Glück, Reya and Schienbein [9]) These parametrisations are an update of GRV
with more recent data. They take into account the virtuality of the photon P 2. The
input scale is Q2

0 = 0.5 GeV2
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Figure 2.4: The invariant amplitudes for parton-parton scattering averaged over spin and
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Figure 2.5: Comparison of the three parameterisations GRV-LO (dotted), SaS 1D (solid)
and SaS 2D (dashed). The effective PDF is calculated at the scale Q2 = 25 GeV2.

As illustration of their differences the corresponding effective PDF are shown in Fig. 2.5.
The differences in the predictions for the distributions of x1,2 and ET 1,2 calculated with
HERWIG5 are shown in Fig. 2.6.

2.2 Jets

Partons produced in the hard subprocess are not directly observable. According to QCD
they have to undergo hadronization. In this process the set of coloured objects, quarks and
gluons, is converted into colourless hadrons. In hard collisions the hadronization results in
bunches of collimated particles flying mostly in the direction of the primary hard partons.
The information on partons produced in the hard subprocess can thus be obtained from
the clusters of secondary particles which follow the direction of the primary parton. These
groups of particles are called jets.

To move from this qualitative picture of the final state to a more quantitative description
one needs a definition how to construct jets. Such definitions should have a close correspon-
dence to the parton-level final state and the algorithm should be well suited for comparison
with theoretical calculations. There are two main categories of the jet algorithms - the cone
and the cluster algorithms.

5Monte Carlo event generators are introduced later in Chapter 5.
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Figure 2.6: Hadron level plots of dσ2j/dx1,2 (left) and dσ2j/dET 1,2 for dijet events ET1,2
>

5 GeV and |η1,2| < 1.5 generated with HERWIG with three different parameterisations of the
photon PDF. Within HERWIG which does not treat separately VMD part and perturbative
part of the SaS sets the effect of the SaS 2D is very similar to GRV-LO.



2.3. BEAM REMNANTS 15

Cone jet algorithms are based on geometrical consideration that particles belonging to
one jet should be close to each other in the angular coordinates.

The cone algorithm proceeds in the following steps:

1. Particles above certain pT limit are taken as jet seeds. The jet pseudorapidities ηjet

and azimuth angle φjet are calculated.

2. All particles satisfying

R =
√

(∆η)2 + (∆φ)2 < Rcone (2.18)

where ∆η = ηjet − ηi and ∆φ = φjet − φi are assigned to the respective jets. Rcone is a
parameter of the algorithm.

3. Jet axes and energies are updated by the recombination scheme

Ejet
T =

∑

i

Ei
T (2.19a)

ηjet =
∑

i

Ei
Tη

i/Ejet
T (2.19b)

φjet =
∑

i

Ei
Tφ

i/Ejet
T (2.19c)

where the sum runs over all particles assigned to a given jet.

4. Steps 2 and 3 are repeated until a stable configuration of jets is reached.

5. If two jets overlap with more than certain fraction OVLIM of the energy of the higher
ET jet, all particles belonging to the more energetic jet are assigned to this jet and the
remaining are discarded. If the fraction of energy in the overlap region is smaller the
particles in the overlap region are assigned to the closer of the two jets.

The actual implementation of the cone algorithm which was used in the analysis was
PXCONE [10]. Its parameters are further described in Chapter 6.

2.3 Beam remnants

So far only hard interactions which occur in the system of the two photons have been
discussed.

In the double resolved photon contribution to γγ collisions the beam remnants from the
photons typically carry small transverse but large longitudinal energy. They would therefore
fly mostly into the beam tube and would thus be unobserved. There are two ways how to
modify this picture.

In HERWIG the soft underlying event option allows the so-called beam clusters to col-
lide producing many soft clusters. This results, after their decay, in redistribution of the
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original large longitudinal energy of particles from beam clusters into large number of soft
particles populating mostly the central region. These particles are indistinguishable from
those belonging to jets and may therefore influence their properties.

The mechanism of the soft collision of beam clusters does not rely on perturbative QCD
but simply parameterises the longitudinal distribution of soft clusters in order to reproduce
the one-particle inclusive distributions as measured by the UA5 experiment at the SPS
collider at CERN.

In PYTHIA the soft underlying collision is modelled by multi-parton interaction.
The amount of energy which originates from the soft collision can best be studied in

the plots of jet profiles and energy flow outside the jets. Jet profiles and energy flows are
introduced in Chapter 6. The implementation of the soft underlying event in the Monte
Carlo event generators is discussed in Chapter 5.



Chapter 3

Current status of measurements of

the photon structure

The available data on photon structure as well as the corresponding theoretical framework
have recently been discussed in two comprehensive review articles [11, 12]. The former
contains also a fairly detailed analysis of existing parametrisations of PDF of the photon.
Most of these parameterisations are extracted from data on the photon structure functions
F γ

2 (x,Q2) measured in deep inelastic scattering of electrons on the quasi-real photons at
electron-positron colliders. However, as the quantity and precision of these data are still
insufficient for reasonably unambiguous extraction of these PDF, additional theoretical as-
sumptions are usually employed as well.

In Fig. 3.1 we show some of the data on F γ
2 and in Fig. 3.2 the corresponding parton

distribution functions extracted by several groups using basically the same data, which
included the following experiments at e+e− colliders

• PLUTO, JADE, CELLO and TASSO at PETRA in DESY [13],

• AMY, TOPAZ at TRISTAN in KEK [14],

# of data points
model # of ind. par. 205 182 - no TPC

χ2 χ2/DOF χ2 χ2/DOF

SaS1D 6 657 3.30 611 3.47
GRS LO 0 499 2.43 366 2.01
CJKL 3 406 2.01 323 1.80

Table 3.1: Comparison of χ2 values obtained for three different fits to F γ
2 (x,Q2). Taken from

[15].

17
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• TPC/2γ at PEP in SLAC [17],

• ALEPH, DELPHI, L3, OPAL at LEP at CERN [18].

The quality of the corresponding fits is summarised in Table 3.1. Note large differences
between the forms of both the quark and gluon distribution functions and the fact very few
data exist below x ' 0.1.

This stands in sharp contrast with our knowledge of structure of nucleons. To illustrate
this difference we show in Fig. 3.3 and in Fig. 3.4 the summary of the results on the proton
structure function F p

2 (x,Q2) as measured in deep inelastic scattering of electrons or muons
on the nucleons in older CERN [19] and recent HERA [20] experiments. In Table 3.2 the
quality of the global fit made by the MRST group [21] of these and other data 1 and in Fig.
3.5 quarks and gluon distribution functions obtained from global analysis of current data by
three main groups are plotted and compared to the result of one older global fit. Note that
the three recent parametrisations are quite close to each other for x down to x ' 10−4 and
that the high quality of the fit, which yields χ2/DOF' 1. In both cases, the number of free
parameters in the fits is around 20.

Beside the measurement of F γ
2 (x,Q2) the structure of the photon has been investigated

in four other types of experiments:

• jet production in γp collisions at HERA [22],

• jet production in γγ collisions at LEP [23, 24],

• heavy quark production γp collisions at HERA [25],

• heavy quark production γγ collisions at LEP [26].

So far the parametrisations of the structure of the photon have been based entirely on the
data from the deep inelastic scattering. An important feature of the PDF is its universality,
i.e. the same PDF should describe different processes. As an illustration of this universality
we show in Fig. 3.6 the comparison of dijet cross-section dσ2j/dET as measured by OPAL at
LEP 2 with PYTHIA using the PDF SaS 1D. If there are sufficient data from other processes
than DIS they should be used in global fits of the PDF.

1These analyses include data on the production of Drell-Yan large mass dilepton pairs, W ± and Z, jets

and direct photons.
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Data set No. of MRST MRST MRST MRST
data pts 0.117 0.121 J

H1 ep 400 382 386 378 377
ZEUS ep 272 254 255 258 253

BCDMS µp 167 193 182 208 183
BCDMS µd 155 218 211 226 219
NMC µp 126 134 143 127 135
NMC µd 126 100 108 95 100
SLAC ep 53 66 71 63 67
SLAC ed 54 56 67 47 58
E665 µp 53 51 50 52 51
E665 µd 53 61 61 61 61

CCFR F νN
2 74 85 88 82 89

CCFR F νN
3 105 107 103 112 110

NMC n/p 156 155 155 153 161
E605 DY 136 232 229 247 273

Tevatron Jets 113 170 168 167 118
Total 2097 2328 2346 2345 2337

Table 3.2: Quality of the fit for MRST2001 partons to different data sets. The first MRST
column shows the χ2 values of the optimum fit with αS(M2

Z) = 0.119. Also shown are the
values for parton sets obtained from fits with αS(M2

Z) = 0.117 and 0.121, as well as those
for parton set J which has structure in the high x gluon.
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Chapter 4

The DELPHI detector at LEP

4.1 LEP

The Large Electron Positron collider (LEP) had been the largest electron-positron collider
in the world. The collider ring had 27 km circumference and its tunnel was excavated
about 100 m below the surface. It was built at CERN near Geneva and commissioned in
1989. During the first phase from 1989 to 1995 LEP was colliding electrons and positrons
at energies around the Z0 mass. Four LEP experiments ALEPH, DELPHI, L3 and OPAL
collected each about 150 pb−1 in this period of time which was equivalent of approximately
4 millions of hadronic Z decays per experiment. The high statistics allowed precise tests
of the electroweak interaction and the Standard Model. Measurements performed at LEP1
have provided accurate values of the properties of the Z boson and other parameters of the
Standard Model.

LEP was upgraded in 1995 to reach centre-of-mass energies for pair production of in-
termediate bosons W+ and W−. The existing radio-frequency cavities made of copper were
supplemented by superconducting cavities of Niobium to achieve higher beam energies. The
machine luminosity was increased by operation in so called bunch train mode when several
bunches arrived at the interaction point during beam-crossing time1.

The information about the integrated luminosities collected by DELPHI during high-
energy runs is given in Table 4.1. At the end of LEP operation centre-of-mass energies
of 208.8 GeV, far beyond its upgrade goal, were achieved. The collider was shut down in
November 2000.

LEP experiments have provided many important results concerning the Standard Model.

• The mass of the intermediate boson Z was measured with high accuracy of mZ =
91.1874±0.0021GeV together with the width of Z and its line shape. From the Z width
and branching ratios of Z the number of light neutrino families Nν = 2.9841 ± 0.0083

1Standard LEP operation was with 4 bunches of electrons against 4 bunches of positrons with beam

crossing time every 22µs.

27
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was determined. Forward-backward asymmetries Af
FB at the Z peak, the effective

vector and axial-vector coupling constants gf
V and gf

A and the branching ratios of Z to
b and c quarks (R0

b and R0
c) were measured.

• The mass of the W boson was obtained from direct measurement with a precision of
mW = 80.450 ± 0.026(stat.) ± 0.030(syst.). Couplings of the three gauge bosons were
studied directly for the first time.

• Throughout the LEP running the energy range accessible by the collider was scanned
for Higgs boson and new physics beyond the Standard Model. Lower limit on the on
the Higgs mass was given mH > 114.1 GeV [27].
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Figure 4.2: DELPHI limit on the Standard Model Higgs mass. 95% confidence level lower
limit on the Higgs mass is shown by red arrow. Full (dashed) curve is the observed (expected)
median confidence from experiments with only background channels. Bands represent hy-
potheses of only background processes at 68.3% (and 95%) confidence level.

• LEP experiments performed also a number of QCD studies. Strong interaction constant
αS(mZ) was measured from jet rates and other event shape variables. Combined
fit gives αS(mZ) = 0.1195 ± 0.0047 in which the error is governed by theoretical
uncertainties.
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• LEP experiments were equipped with precise vertex detectors which started a new era
in B-physics. Lifetimes of B-mesons were measured with substantially higher precision
and oscillations of B − B◦ were studied.

Table 4.1: Integrated luminosity for high energy runs as collected by DELPHI
Year 1995 1996 1997 1998 1999

Ecm [GeV] 130 136 161 172 183 189 192 196 200 202

Lumi [pb−1] 2.9 3.0 9.6 10.2 54.1 157.7 25.8 77.4 83.8 36.9
Year 20002

Ecm [GeV] 205 207
Lumi [pb−1] ∼80 ∼140

4.2 The DELPHI detector

The DELPHI (Detector with Lepton, Photon, Hadron Identification) detector was one of
the four detectors at LEP. It operated successfully since 1989 until 2000. Details on the
design and operation of the DELPHI detector can be found in [28, 29], in the following
mainly the parts relevant for this analysis are discussed.

The general layout of the detector is shown in Figure 4.3. The detector was designed to
cover full solid angle. It consisted of a barrel part and two endcaps. The barrel surrounded
the beam pipe where at the centre of the detector electrons collided with positrons. Charged
particles were subject to an uniform electromagnetic field of 1.23T parallel to the beam pipe.
The field was produced by a superconducting solenoid. The coordinate system adopted
in DELPHI had z axis defined by the direction of electron beam, x axis pointing to the
LEP centre and y pointing upwards. If not specified θ (φ) denote polar (azimuthal) angle
respectively.

Information from different subsystems of the detector was combined to build complete
picture of the event. Several tracking detectors provided track measurement for charged
particles. From the track curvature in the magnetic field of the superconducting magnet the
track momentum and charge of the particle were reconstructed. Measurements of ionisation
loss along the trajectory aided particle identification. Energy measurement for both charged
and neutral particles was provided by calorimetry. Electrons and photons were absorbed by
electromagnetic calorimeters while hadrons were absorbed by the hadron calorimeter located
farther from the interaction point. Particle identification for charged particles was improved
by detectors of Čerenkov radiation. High energy muons were identified by reaching the out-
most layers of the detector (muon chambers) and by narrow track in the highly-granular
hadron calorimeter. Acceptance gaps in the electromagnetic calorimetry were covered by

2The luminosity was delivered at various energies near 205 and 207 GeV in 2000.
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scintillation counters around dead spaces in the barrel electromagnetic calorimeter and in-
stallation of the photon taggers at 40◦ in polar angle where the barrel and forward calorime-
ters did not overlap.

The description of the DELPHI detector is organised as follows. Tracking detectors are
described first in order of appearance from the interaction point to the outer layers. Then the
description of the calorimetry is given followed by Čerenkov detectors and other specialised
devices.

4.2.1 Tracking detectors

Microvertex detector

The Microvertex Detector (VD) surrounded the beam pipe in three layers at radii 6.3, 9.0
and 10.9 cm. Detector layers were made of double-sided silicon strip detectors arranged in
24 sectors with overlaps between adjacent modules. The outer and closer layer provided
both Rφ and z coordinates while the middle one measured only in Rφ direction.

Very forward tracker

The VD detector was extended in the forward region by so-called Very Forward Tracker
(VFT) consisting of pixel and ministrip detectors. After the upgrade it covered region down
to 10◦ in polar angle. Sketch of the combined vertex detector is given in Figure 4.4.

Inner detector

The Inner detector was located between radii 12 and 23 cm providing fast tracking informa-
tion which was also used for trigger. It consisted of inner drift jet chamber surrounded by
five layers of cylindrical MWPC (so-called straw tubes). Polar angle coverage of the device
was down to 15◦.

Time Projection Chamber

Time Projection Chamber (TPC) was the central device for particle tracking. It filled the
barrel region between radii 40 and 110 cm and length of 2x130 cm in z in both endcaps.
The readout was organised into six azimuthal sectors on each end plate with 16 circular
pad rows and 192 sense wires in total. Apart from its crucial role in particle tracking the
information on dE/dx obtained in TPC was used for particle identification. The layout of
the TPC operation is shown in Figure 4.5.

Outer detector

The Outer detector (OD) was installed between the barrel RICH and the electromagnetic
calorimeter (HPC). It consisted of 5 layers of drift tubes operated in limited streamer mode.
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Figure 4.4: A sketch of the combined silicon tracker. The cylindrical part are the three layers
of VD. Four crowns of detectors at the ends of VD are two layers of pixel and two layers of
ministrip detectors of VFT.
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Figure 4.5: Design of the TPC and its operation principle. Charged particles ionise the
gas along the track. The chamber is filled with Ar:CH4 mixture (80:20). The free charge
is drifting along the drift field towards the end plates where it is detected by multiwire
proportional chambers (MWPC). The MWPC provide xy coordinates of the track segments.
The z coordinate is reconstructed from the drift time.
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It occupated space between 197 and 206 cm in z. The coverage in polar angle was down to
39◦. The detector was used to aid track reconstruction for tracks with large momenta for
which TPC dimensions were not sufficient.

Forward Chamber A

Forward chambers FCA were drift chambers covering angles between 11 and 32◦ at 160 cm
in |z|. Each chamber was made up of two 2 planes of drift tubes positioned near end plates
of TPC.

Forward Chamber B

Another two layers of drift chambers were located between the forward RICH detector and
forward electromagnetic calorimeter FEMC at z = 275cm in both endcaps. The acceptance
of FCB ranged from 10 to 25◦ in polar angle.

Muon chambers

Muon chambers were tracking detectors installed behind the hadronic calorimeter. Muons
with energy above 3 GeV were capable to reach the muon systems. There was a barrel
part (MUB) and two forward parts (MUF). A gap between MUB and MUF was covered by
Surrounding Muon Chambers (SMC).

The acceptance and the resolution of tracking detectors is summarised in Table 4.2.

4.2.2 Calorimeters

High Density Projection Chamber

The High-density Projection Chamber (HPC) was a lead electromagnetic calorimeter occu-
pying space between 208 and 260 cm down to 40◦ in polar angle. 18 radiation lengths X0

of lead wires were arranged in 6 radial layers with gas volume inbetween them. Electric
field along the layer served as a drift field. Shower coordinate in z was measured from the
drift time to the read-out pads. Readout granularity was 1◦ in φ and 4 mm in the drift
coordinate z.

Forward Electromagnetic Calorimeter

Forward Electromagnetic Calorimeter (FEMC) was the largest electromagnetic calorimeter
in the endcaps. It was installed behind the FCB. It was a Čerenkov light counter assembled
from blocks of lead glass. The signal is read-out by a phototriode. Each block was a truncated
pyramid with dimensions 5 × 5 cm2 (5.6 × 5.6 cm2) and length of 40 cm.
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Table 4.2: Tracking detectors at DELPHI [28]
Acceptance No.points Resolution

Detector
R[cm] z[cm] θ[◦] along track per point [mm]

VD 9/11 12 37-143 3 Rφ:0.007,z:0.009
VFT 10-25 4 x,y 0.1
ID:jet 11.8-22.3 40 17-163 24 Rφ:0.09

ID:straws 23-28 ≤ 50 30-150 5 z:≤ 1
16 Rφ:0.23

TPC 35-111 ≤ 134 20-160
192 z:0.9

5*Rφ Rφ:0.11
OD 198-206 ≤ 232 43-137

3*z z:44
∼ 445 Rφ:1.5

MUB ∼ 485
≤ 185 52-138 2 (+2)

z:10
FCA 30-103 155-165 11-33 2 ∗ (x, u, v) x,u,v:0.3
FCB 53-195 267-283 11-35 4 ∗ (x, u, v) x,u,v:0.25

463
MUF 70-460

500
9-43 (2 + 2) ∗ (x, y) x,y:1.0

Small Angle Tile Calorimeter

The Small Angle Tile Calorimeter (STIC) was an electromagnetic sampling calorimeter
composed of lead plates interspaced with scintillator layers. The scintillation light from 47
scintillator layers was collected by optical fibres. Detector covered angular region of 29-188
mrad and was used for anti-tagging scattered electron beams in this thesis.

Hadron calorimeter

Hadron calorimeter HCAL consisted of a barrel part (43◦ < θ < 137◦) and two endcaps
(11◦ < θ < 49◦). It was a sampling gas detector consisting (in the barrel part) of 21 layers of
iron plates of the total radiation length 6λ interspaced with layers of limited streamer tubes.
The plastic tubes were coated with graphite and were filled with Ar/CO2/i-butane mixture.
The detector signal was read out from pads arranged in towers and also directly from the
sensitive tubes (so called cathode read-out) providing higher granularity in azimuthal angle.
Apart from the energy measurement the calorimeter could be used for muon identification.

The overview of properties of calorimeters is given in Table 4.3.

4.2.3 Čerenkov detectors

Innovative part of DELPHI design was the employment of the Ring Imaging Čerenkov de-
tectors for particle identification over almost full solid angle. For charged particles with
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Figure 4.6: Sketch of the STIC components.

Table 4.3: Calorimeters at DELPHI [28]

Acceptance Resolution
Detector

R[cm] z[cm] θ[◦]
Depth

σE/E [%]

HPC 208-260 ≤ 254 43-137 18Xo 23/
√
E + 1.1

FEMC 46-240 284-340 10-36.5 20Xo 4% at 45.6 GeV
VSAT 6-9 770 5-7mrad 24Xo 5% at 45.6 GeV

B: 320-479 ≤ 380 10-170 6λ 112/
√
E + 0.21

HCAL
FW:65-460 340-489
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Figure 4.7: The projective geometry of the HCAL.

measured momentum RICH provides an estimate of their mass. Čerenkov detectors were
installed both in the barrel and in endcaps. Combined liquid and gaseous radiators separate
particles over wider range of velocities.

The Barrel RICH covered θ region between 42◦ to 138◦. It consisted of two vessels
separated by a layer of quartz plates with drift tubes and MWPC on side. The inner
volume was filled with liquid radiator C6F14 (refractive index n = 1.2718). The outer gas
volume of C5F12 (n = 1.00194) was equipped with mirrors to reflect Čerenkov photons onto
drift tubes. Čerenkov light was detected by time-projection chamber photo-detectors with
TMAE for photon conversion. Threshold momenta for emitting Čerenkov light were 0.17
GeV (pions), 0.7 GeV (kaons), 1.2 GeV (protons) in the liquid radiator and 2.3 GeV (pions),
8.2 GeV (kaons) and 16.0 GeV (protons) in the gas radiator.

The Forward RICH was located between 15◦ < θ < 35◦ in polar angle (145◦ < θ < 165◦

respectively) and in the distance 1.7m < |z| < 2.7m. It housed also liquid and gas volumes.
The operation was complicated by the presence of magnetic field orthogonal to the electric
drift field.



4.2. THE DELPHI DETECTOR 39

4.2.4 Luminosity monitor

Very Small Angle Tagger

The primary purpose of the VSAT was to be a precise luminosity monitor. It was a combined
calorimeter and tracker system located behind beam quadrupoles giving access to smaller
virtualities of the scattered beam. The detector made of tungsten plates interspaced with
silicon strip detectors is in two opposite quadrants covering only one half of the possible
acceptance in angular region of ±45◦ in azimuth and polar angles between 5 to 7 mrad.

4.2.5 Data acquisition

Amount of recorded events was reduced by the trigger system. DELPHI had four levels of
the trigger denoted L1-L4. Levels L1 and L2 were synchronous with the beam crossing time.
L1 was based on the information from fast tracking detectors ID, OD, FCA and FCB, barrel
muon chambers, FEMC, STIC and scintillators TOF and HOF. Its decision time was 3.9µs.
For the second-level trigger more thorough information from the L1 detectors was available
together with the signals from TPC and HPC. L2 decision occurred 39µs after BCO. Trigger
levels T3 and T4 were software filters. The reduction was from the BCO at the frequency
90kHz in the setup of 8x8 equidistant bunches of electrons and positrons to about 1Hz after
the L3. L4 was used to tag some background events.

Positive trigger output resulted in complete event read-out and its archivation on tape.
So called raw data were later processed by DELPHI analysis software DELANA.

4.2.6 Luminosity measurement

Bhabha scattering was used to determine luminosity corresponding to the collected data.
It is both theoretically well understood and the process provides enough statistics to be
a reference process for a precise luminosity measurement. VSAT and STIC were used in
luminosity analysis. The error of the luminosity measurement was about 0.1%.
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Chapter 5

Monte Carlo simulation

This chapter deals with the description of Monte Carlo event generators used for the simu-
lation of the physical processes. Leading-order event generators HERWIG and PYTHIA are
introduced and their features important for the dijet production in γγ collisions are shortly
reviewed. Simulation of the response of the DELPHI detector and the event reconstruction
program are also discussed.

5.1 Event generators

5.1.1 HERWIG

HERWIG is a general purpose Monte Carlo event generator for hard collisions with emphasis
on parton shower development [30]. It implements binary hard scattering processes in two-
photon collisions which makes the most important contribution to the dijet production. The
direct, single-resolved and double resolved interactions are simulated as separate processes.
User of the program is responsible for proper mixing of events from different processes.
Version 5.9 of HERWIG was used in this analysis.

HERWIG generates a γγ event in a sequence of steps:

• First the hard scattering of partons (in resolved channels) or photons (in direct channel)
is generated according to the formula 2.13. In this step the partons are taken on mass-
shell.

• Then the parton showers are added to both the initial and final state partons, taking
correctly into account the kinematics of parton branching.

• After ending the parton showering gluons are forcibly split into quark-antiquark pairs.

• Resulting set of quarks and antiquarks are combined to colourless clusters using the
concept of colour connection.
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• These clusters are allowed to decay using basically the phase space arguments. If some
cluster is too heavy it is first split into two lighter clusters. There are parameters
governing this non-perturbative cluster splitting which we left to their default values.

HERWIG uses a limited set of internal PDFs but can also be linked to PDFLIB [31].
HERWIG has an option to accompany double-resolved photon interaction with soft un-

derlying event as discussed in 2.3. Its generation is controlled by two parameters called
PRSOF and ENSOF. PRSOF determines the fraction of events to be accompanied with
soft underlying event while ENSOF represents which fraction of the remnants energy should
be used in the interaction. The value of PRSOF was adjusted in a way described in sec-
tion 6.2.1. For clarity of meaning the value of PRSOF is denoted by SUE in the plots. The
second parameter ENSOF was fixed to its default value of 1.

5.1.2 PYTHIA

PYTHIA 6.143 is another multi purpose event generator. Its detailed description is given
in [32]. Similarly to HERWIG it provides a Monte-Carlo model for high-pT jet production in
γγ collisions. PYTHIA automatically generates mixture of possible interaction types with
correct weights. Apart from the hard 2-2 parton scattering also soft scattering processes are
generated.

Processes involving photons are divided into two classes

• Direct photon - photon interacts as a whole through its electromagnetic interaction.

• Resolved photon - photon interacts through its coupling to a qq pair. Two kinds of
events are distinguished

– Vector meson dominance (VMD) events

The photon fluctuates into a vector meson and it is further treated as a hadronic
process. The model includes elastic and diffractive scattering, low-pT and high-pT

jet production.

– Generalised vector meson dominance (GVMD, also called anomalous) events

If the virtuality of the qq pair is sufficiently large, the process is perturbatively
calculable and both the initial parton distribution and the evolution of the parton
shower can be determined. High-pT events are produced in anomalous process.

As far as the simulation of large-pT jets is concerned PYTHIA uses basically the same
framework, outlined in Chapter 2, as HERWIG. PYTHIA uses internal implementation of
the SaS sets of the PDF as it distinguishes between the hadronic (VMD) and point-like
(anomalous) part. This subdivision is not available to a user of PDFLIB library.

PYTHIA uses a different hadronization model than HERWIG. Fragmentation is done
within the Lund string model. The string fragmentation incorporates the idea that the force
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between two colour charges is linearly increasing with their distance. If the partons are
sufficiently distant the string may break into qq pairs and two new strings appear. This
proceeds iteratively until the energy in the rest frame of the short strings is close to masses
of known hadrons.

Multiple parton interaction is used as default with pmi
T = 1.4 GeV. It defines a pT cutoff

for generation of additional binary processes.

5.1.3 Comparison of Monte Carlo event generators

In this section the description of the Monte Carlo event generators is complemented by
several plots comparing them on the hadron level. The distributions of the invariant mass
W , fractions of photon momenta x1,2, absolute values of jet pseudorapidities |η1,2| and of the
ET1

of the leading jet are shown for dijet events in Fig. 5.1. PYTHIA SaS 1D and HERWIG
SUE=0.2 predict about the same cross section, PYTHIA SaS 2D distributions has 10%
more events. In agreement with Fig. 2.6, where the same PDFs were used in HERWIG, the
PYTHIA SaS 1D sample yields the smallest slope of dσ/dET1

while HERWIG SUE=0.2 with
GRV predicts the largest. Similar behaviour can be found also in the distribution of x1,2 -
the sample with SaS 1D generates less events for small x (where resolved photon dominates)
than GRV and SaS 2D and more events with x close to 1. PYTHIA SaS 1D sample has more
events with W < 30 GeV than PYTHIA SaS 2D and HERWIG SUE=0.2 whose distributions
have longer tail. The distributions of |η1,2| are similar for all three samples.

5.2 Simulation of the DELPHI detector

In order to compare measured data with the prediction of Monte Carlo models the behaviour
of the detector has to be accounted for. Monte Carlo events generated by PYTHIA and
HERWIG were further processed by two programs - DELSIM which is the full simulation
of the DELPHI detector and DELANA which is the event analysis program of the DELPHI
collaboration.

DELSIM

DELSIM [33] simulates response of the DELPHI detector to a generated physics process.
Its output is a collection of signals in the form of so called Raw Data which is the same
as in DELPHI data taking. Thus the simulated events can be further analysed with the
DELPHI event reconstruction program DELANA to interpret the recorded interaction in
terms of particle tracks, showers and even identified particles. DELSIM can either invoke
one of the built-in event generators for the generation of the physics process or it can process
output of external event generators. The latter option was used. DELSIM simulates passage
of particles through DELPHI. The detailed knowledge of DELPHI geometry, magnetic field
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Figure 5.1: The distributions at the hadron-level of the invariant mass of the hadronic system
W (a), fractions of the photon momenta x1,2 (b), absolute value of jet pseudorapidities |η1,2|
(c) and ET1

of the leading jet (d). Events with ET1,2
> 5 GeV and |η1,2| < 2 are shown for

PYTHIA with SaS 1D (solid line), SaS 2D PDF (dashed) and HERWIG SUE=0.2.
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and materials in the detector is taken into account. The following processes are included
in the simulation of passage of particles through matter - multiple scattering, energy loss
along the trajectory, pair conversion, bremsstrahlung, annihilation of positrons, delta rays,
photoelectric effect, interactions with nuclei, decays of unstable particles. At the end of
event simulation the detector signals are stored in the Raw data format.

DELANA

DELANA [34] is the official event reconstruction program. It proceeds in the following steps:

• Track elements within single subdetectors are searched.

• Track hypothesis is done within a subdetector not considering other subdetectors.

• An extrapolation of tracks from one detector (mainly from the TPC) to others is carried
out. New fit of the track parameters is done and track hypothesis is correlated with
calorimeter showers.

• Tracks are used to fit the position of vertex.

• Identification of particles is done with the help of RICH detectors, dE/dx, calorimeter
and muon chambers signals.

5.3 Details on Monte Carlo samples

Monte Carlo samples generated by HERWIG and PYTHIA were processed by the detector
simulation program DELSIM [33] for simulation of the detector response. As the detector
simulation is a CPU intensive task, an attempt has been made to reduce the number of
simulated events and skip those which would hardly pass the selection criteria for analysis
as listed in Section 6.1.

The following three Monte Carlo samples were employed in the analysis.

1. HERWIG 5.9 GRV

This sample is a dedicated sample for the purpose of this analysis. It was simulated
in Prague with the standard simulation tools. A special care was taken to keep all
the simulation history including the information on the hard parton process. For this
reason some studies were possible only with this sample as the complete simulation
history was not retained for PYTHIA samples introduced below. The list of most
important HERWIG parameters1 set in this work

1The rest of the parameters were left to their default values
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• PDF: GRV G LO2

• The centre-of-mass energy of the colliding electrons and positrons was set to√
see = 196 GeV. This slightly differs from the luminosity-weighted average for

the data collected in 1999. The sample was prepared before 1999 when the beam
energies were unknown.

• pmin
⊥ = 3 GeV (corresponding to the HERWIG parameter PTMIN) minimum pT

of outgoing partons in the hard scattering. It is discussed below.

• The spectrum of generated photon virtualities was limited to Q2 < 10 GeV2 by
setting Q2WWMX=10. Above 10 GeV2 the scattered electron beam should be
well detected with the electromagnetic calorimeters. Events with smaller photon
virtualities may remain untagged. Q2 distribution of the selected Monte Carlo
events is shown in Fig. 6.3.

• Standard version of the generator implements αs evaluation in NLO. This is ap-
propriate for example for the simulation of deep inelastic scattering. For the
purpose of this study the generator code was modified to calculate αs in LO.

Concerning the parameter pmin
⊥ it should be chosen small with respect to the ET of

the jets in order to generate complete sample of two jet events. On the other hand too
small values of pmin

⊥ are outside of the region where perturbative QCD is applicable.
The distribution of pT of outgoing partons is shown in Fig. 5.2. Three test Monte
Carlo samples were generated with pmin

⊥ = 3 GeV and SUE=20% and pmin
⊥ = 2 GeV

(SUE=20% and with no SUE component). pT of the partons is shown for events with
two or more jets. There is about 20% more events contributing to two-jet cross section
in the pmin

⊥ = 2 GeV SUE=20% sample compared with the pmin
⊥ = 3 GeV SUE=20%

sample which was chosen for this thesis. It reflects the fact that HERWIG employs
hard process cross sections which diverge for pmin

⊥ → 0 and can not thus be used for
studies of the total cross section.3 The question of choosing an optimal value of the
pmin
⊥ cut is discussed in [35].

Out of the generated sample only the events satisfying:

• sum of the pT of the final state particles on the hadron level
∑

pT > 8 GeV

• there is at least one jet found on the hadron level njets ≥ 1

were processed with the detector simulation. The probability that genuine dijet events
will not satisfy these conditions is very small as documented in Fig. 5.3 obtained with
a smaller sample of unbiased simulation.

The sample corresponds to 1000 pb−1.

2This PDF is denoted as GRV G LO 3-5-3 set in the PDFLIB.
3PYTHIA cross section is regularised for low pT .
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2. PYTHIA 6.143 SaS 1D

This sample is a general purpose simulation sample used within DELPHI collaboration.
The PDF set of the photon is SaS 1D. All PYTHIA parameters were left to its default
values. The event selection is quite loose

• Evis
T > 3 GeV and at least 3 charged tracks with momentum p > 0.1 GeV

• or one particle (tagged electron) with E > 0.4 Ebeam

The sample has an equivalent luminosity of 550 pb−1.

3. PYTHIA 6.143 SaS 2D

This sample was generated as an official Monte Carlo sample at CERN mainly upon
the request of this study. The PDF set of the photon is SaS 2D. Apart from the PDF
choice the parameters of PYTHIA are set to the default values. The selection of events
is dedicated for jet physics in γγ. It was generated at CMS energy 199.5 GeV with the
following cuts

• invariant mass of the γγ final state Wγγ > 6 GeV

• at least one jet ET > 3 GeV found by PXCONE jet algorithm.

This sample was produced for this analysis to have a comparison between two PDFs
within the same generator. The sample has an equivalent luminosity of 1000pb−1.



Chapter 6

Analysis

The present analysis was done on the 1999 data. The total integrated luminosity of 219.4 pb−1

was collected at four different beam energies. Most data were recorded at 196 GeV and
200 GeV (about 80 pb−1 each) with additional 25 pb−1 (35 pb−1) at 192 GeV (202 GeV).
For the list of DELPHI runs satisfying requirements on the quality of the detector operation
the partial luminosities were summed.

Data recorded at the four beam energies listed above were analysed together for the pur-
pose of this study. The systematic error originating from neglecting the energy dependence
of dijet cross section is small as shown in Fig. 6.1 where the dijet cross section is plotted as
a function of e+e− CMS energy. The cross section for dijet production varies by about 2%
from the luminosity-weighted average of the beam energies (198 GeV) to the end-points at
192 GeV and 202 GeV.

6.1 Event selection

The following criteria were applied for event selection.

• At least 5 tracks were required in the region of polar angle 25◦ < θ < 155◦. The
requirements on the track quality were

– pT > 100 MeV

– track length at least 30 cm

– impact parameters less than 4 cm (10 cm) in Rφ (z) respectively

– a measurement error ∆p/p < 1

These are common requirements on the track quality for QCD studies at DELPHI.
The request for 5 or more tracks reduces background of lepton-pair production in two
photon collisions (in particular γγ → τ+τ−).
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Figure 6.1: The γγ cross section as a function of the energy available in the e+e− centre-
of-mass system. In the upper plot three curves are shown for the cross section of double-
resolved, single-resolved and direct process with pmin

⊥ = 3 GeV. The lower plot shows the
cross section for the dijet production with ET1,2

> 5 GeV and |η1,2| < 1.5.
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• For calorimeter clusters thresholds were set to 0.3 GeV in HPC and STIC, 0.4 GeV in
FEMC and 1.5 GeV in HCAL.

• In order to suppress the background from pair production of W+W−, ZZ or in s-channel
interaction with Z/γ, the total pT in the event was demanded to satisfy

∑

pT < 30 GeV.

• Missing pT was required to be less than 5 GeV as interactions of almost real photons
were expected to be well balanced in pT .

• Photon virtuality was constrained by anti-tagging condition on scattered electron
(positron). Events with high energy track or cluster (E > 30 GeV) were rejected.

• The number of reconstructed jets was required nj ≥ 2. The jet search program PX-
CONE was used with the following parameters

– Rcone=1.

– OVLIM=0.75

– minimum jet transverse energy ET > 4 GeV.

• Both jets had to be reconstructed in the central region1 of the detector |η1| < 2 and
|η2| < 2 and have ET < 15 GeV.

The expected amount of background events in the selected data sample is illustrated by
Fig. 6.2. The contamination by background processes is small (2%), except for very large
ET , and its distribution is flat.

Efficiency of the trigger for the channel under study was estimated using compiled data2

on trigger efficiency for a single track in different angular and momentum ranges [36]. For
each track in the event the efficiency of the trigger in the particular angular and momentum
range was looked up and a random number was generated by uniform distribution between
0 and 1. If the random number was lower then the tabulated trigger efficiency for at least
one track in the event the event was considered as accepted. The trigger efficiency for this
analysis is given by the ratio of accepted events to the total number of events which is equal
to 99.1%. The efficiency close to 100% is in accord with the expectation that hadronic events
with multiple tracks are well triggered by DELPHI. The trigger inefficiency is thus small and
negligible source of error in this analysis.

The distribution of the virtualities of interacting photons in data is inferred from the
Monte Carlo simulations as it cannot be measured due to the anti-tagging condition. Photon
virtualities Q2 are shown for PYTHIA SaS 1D and HERWIG in Fig. 6.3. Mean virtuality of
the photon in selected Monte Carlo events was found to be < Q2 >= 0.3 GeV2 with median
of 3 × 10−4 GeV2.

1In certain parts of the analysis stricter cuts on |η| of the jets were adopted. This is properly noted in

the text.
2The parametrisation of the single track efficiencies was provided by Valeri Pozdniakov.
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Figure 6.2: The data distributions of ET and η are presented together with the cumulative
contributions of background processes in the selected sample of events. The background
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HERWIG SUE=0.2.

In the following we shall need separately the individual contributions of double-resolved,
single-resolved and direct interactions. In an experiment this is usually done by imposing
cuts on energy fractions (2.15) calculated at the detector level. The plots in Fig. 6.4 quantify
the efficiency and purity of these cuts to select double-resolved and direct contribution. As
a single cut variable xcut is not efficient to select single-resolved events thus it is not shown
in this plot. Based on this plot we have decided to define operationally the double-resolved
contribution by means of cuts

x1 < 0.7, x2 < 0.7 (6.1)

and direct process by

x1 > 0.8, x2 > 0.8 (6.2)

As an illustration of their relative importance, the direct, single-resolved and double-
resolved contributions to dijet cross section as a function of ET are shown in Fig. 6.5. We
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see that the direct photon contribution dominates at large ET , whereas the double-resolved
photon dominates at small ET , but drops fast in relevance with increasing ET .

6.2 Comparison of Monte Carlo generators with data

In this section the data on the detector level will be compared with Monte Carlo event
generators PYTHIA and HERWIG using samples defined in section 5.3.

Soft particles accompanying the hard two-photon collisions are studied first. The in-
tention is to tune Monte Carlo generators using the transverse energy activity outside the
jets.

As it is important to check that the event generators which are later used for the de-
termination of the differential cross sections have reasonable description of data, also the
various characteristics of jets and of the dijet final state are compared with HERWIG and
PYTHIA predictions.
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6.2.1 Soft particles in hard γγ collisions

An important part of the comparison between Monte Carlo generators and data is the de-
scription of the transverse energy flow in an event because the reconstruction of jets is
influenced by soft physics phenomena. Photon remnants in the double-resolved process
can interact and particles from their interaction populate the central region of the detector.
These particles cannot be distinguished from the products of the hard scattering and system-
atically increase ET of the jets. They also modify the correlation between jets reconstructed
in the event and partons produced in the hard subprocess. Monte Carlo generators describe
these additional soft particles by means of multiple parton interaction (PYTHIA) and soft
underlying event (HERWIG), shortly described in section 2.3. Both models and their pa-
rameters used in the event generation are described in Chapter 5. Monte Carlo samples
denoted PYTHIA SaS 1D, PYTHIA SaS 2D, HERWIG SUE=0, HERWIG SUE=0.2 and
HERWIG SUE=0.3 were compared with data.

Transverse activity in the events was investigated in jet profiles and in mean transverse
energy flow outside the jets.

Jet profiles

Jet profiles are calculated from 2-dimensional distributions of transverse energy flow in the
area surrounding the jet axis. For each of the two leading jets in the event the transverse
energy flow as a function of the distance ∆φ and ∆η from the jet axis is determined. These
values are summed for all events in the sample and normalised to the number of jets. Finally
the mean values of transverse energy flow in the bands of |∆η| < 1 (or |∆φ| < π/2|) are
projected onto the φ (or η) axis. The errors are calculated by accumulating errors on the
ET measurement of tracks.

The jet profiles are shown separately for events with x1,2 < 0.7 (Fig. 6.6) and x1,2 > 0.8
(Fig. 6.7). The effect of the soft underlying event is visible on so-called jet pedestals around
|∆φ| = 1. The shape of the jet profiles in the domain of direct process (Fig. 6.7) is well
described by all Monte Carlo samples defined above while in the domain of double-resolved
process the deficiency of HERWIG SUE=0 is obvious. This absence of the simulation of soft
underlying event results in lower jet pedestals than in data and other Monte Carlo samples.
The difference in the jet pedestals seen in the plot is equivalent to about 1 GeV shift in the
transverse energy of the jet.

For two-photon events the opposite jet is seen in the ∆φ distribution at ∆φ = π.

Energy flow outside the jet area

Another quantity characterising the activity outside the jets is the transverse energy flow.
The transverse energy flow is defined as a sum of ET in the area R > 1.2 from the jet axes.
Only tracks and clusters within |η| < 1.5 are taken into account. The sketch how the energy
flow is calculated is shown in Fig. 6.8. Mean energy flow in bins of maximum (xmax) and
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Figure 6.6: Jet profiles for events with x1,2 < 0.7. Most events in this region of x are
expected from double-resolved interaction. Data (solid) are plotted together with Monte
Carlo generators PYTHIA (SaS 1D and SaS 2D) and HERWIG with different values of
SUE. Jets in the central area of |η| < 1 and with 5 < ET < 7 (upper plots) and with
7 < ET < 15 (bottom plots) were analysed. The errors are track measurement errors.
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Figure 6.7: The same as in Fig. 6.6 but for x1,2 > 0.8.
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minimum (xmin) values of x reconstructed in the event is shown in Fig. 6.9. Lower values of
xmax imply that the event is likely a double-resolved interaction, similarly high values xmin

select direct events.

φ

|η| < 1.5

Figure 6.8: Energy flow outside the jets area. Transverse energy flow is calculated in the
crosshatched area for |η| < 1.5 and |φ| < π. Jets are shown as shadow circles surrounded by
white area R < 1.2.

To summarise the observations on the transverse energy flow outside the jets:

• HERWIG with SUE=0.2 is closer to the data than the sample without SUE. Without
the inclusion of SUE jet profiles are reproduced only for jets coming from the direct
interaction. The simulation of SUE refines the description of jet profiles in particular for
jets of double-resolved processes. On the basis of Fig. 6.6-6.9 the parameter SUE=0.2
was fixed for further studies. This sample will be denoted HERWIG GRV to conform
the notation of PYTHIA samples.

• PYTHIA provides a very good model of the soft interaction accompanying the two-
photon collision. Its default for multiple parton interaction is sufficient to describe the
jet profiles and the energy flow outside of jets. The choice of the PDF of the photon
(SaS 1D and SaS 2D) does not make a difference in these plots.

6.2.2 Event properties

Figures 6.10-6.13 show uncorrected distributions of the invariant mass W , the fractions of
photon momenta x1,2, the absolute value of jet pseudorapidities |η1,2| and the ET of the
leading jet. The selection of events is done according to section 6.1. The distributions of
these variables on the detector level are compared with normalised Monte Carlo predictions
of PYTHIA and HERWIG. The distributions of Monte Carlo were multiplied by number
1.1 (PYTHIA SaS 1D), 0.9 (PYTHIA SaS 2D) and 1.4 (HERWIG SUE=0.2) so that their
integral is the same as that of the data to focus on the differences between Monte Carlo and
data in the shapes of the distributions. The discrepancy between the total number of events
in some Monte Carlo sample and data is not important for further analysis as it has no effect
on the normalisation of the unfolded result.
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Figure 6.10: The visible invariant mass W on the detector level for events with two or more
jets with ET > 4 GeV and |η1,2 < 2|. The error bars are statistical errors.
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Figure 6.11: The uncorrected distribution of dN/d|η1,2|. The statistical errors are shown.
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In Fig. 6.14 the distribution of the multiplicity of charged particles for all selected events
and separately for regions of x where most events are expected from double-resolved process
(x1,2 < 0.7), direct process (x1,2 > 0.8) and rest of events (x1 < 0.7 and x2 > 0.8 or x1 > 0.7
and x2 < 0.8) is presented.

Normalised samples of PYTHIA SaS 1D and HERWIG SUE=0.2 reproduce the shape
of the W distribution while PYTHIA SaS 2D has a lack of events for W < 25 GeV. All
generators agree with data for jet pseudorapidities. The data distribution of ET is reproduced
by PYTHIA SaS 1D, the slope is larger for PYTHIA SaS 2D and HERWIG SUE=0.2.
PYTHIA SaS 2D generates more events in the region of x1,2 < 0.7 than are found in data.
PYTHIA SaS 1D and HERWIG SUE=0.2 follow the data better.

Summarising the above comparisons we conclude that the best description of data is
achieved with PYTHIA SaS 1D. HERWIG SUE=0.2 is close to the shape observed in data
for distribution of x1,2 and of charged multiplicity in the domains where double-resolved
interactions are rare. Both HERWIG SUE=0.2 and PYTHIA SaS 2D have steeper distri-
bution of the ET of the leading jet than the data. Significant departures from the data are
observed with PYTHIA SaS 2D which has shortcomings in prediction of the distribution of
the invariant mass, the fractions x1,2 and the charged multiplicities. The exception is the
distribution of |η1,2| where all Monte Carlo samples follow the data well.

Jet shapes

Jet shapes quantify the internal structure of jets, i.e. how much of the jet transverse energy is
contained within a cone of a smaller radius r around the jet axis. They are usually described
by the quantity

ψ(r) =
1

Njet

Njet
∑

jet=1

ET (r)

ET (r = R)
(6.3)

presented in Fig. 6.15 and 6.16. The jet shapes are compared in two intervals of ET of the jets
(Fig. 6.15) and also separately for jets which are predominantly from double-resolved or direct
interactions (Fig. 6.16). Beside the HERWIG SUE=0.2 sample also the samples without SUE
and with SUE=0.3 are shown to demonstrate the effect of SUE on the shape of the jets.
Jet shapes were studied in detail at HERA [37] and recently also at TEVATRON [39], this
measurement is one of the first in two-photon collisions [24, 38].

Jet shapes were investigated in two regions of jet transverse energies 5 < ET1,2
< 7 GeV

and 7 < ET1,2
< 15 GeV and also separately for jets which were predominantly double-

resolved and direct. Measured jet shapes are shown together with all Monte Carlo samples
including HERWIG samples without SUE and with SUE=0.3 to see the effect of SUE on jet
shapes. As expected jets are narrower for higher ET (Fig. 6.15) than for lower ET . PYTHIA
(both SaS 1D and SaS 2D) reproduces jet shapes better than HERWIG. HERWIG SUE=0
yields the highest and HERWIG SUE=0.3 the lowest ψ(r), which out of the HERWIG
samples is the closest to the data. However better agreement between data and HERWIG
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Figure 6.14: The distribution of the charged multiplicity on the detector level for all selected events (upper plot)
and in regions x1,2 < 0.7 (left) x1,2 > 0.8 (middle) and the rest of the events in the last plot. The errors shown
are statistical errors. Monte Carlo samples are not normalised to the data on plot-by-plot basis but the same
multiplication factors as in the upper plot are also used for the plots in different regions of x1,2.
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SUE=0.3 in this plot is rather a coincidence as shown in Fig. 6.16 where ψ(r) is plotted
separately for x1,2 < 0.7 and x1,2 > 0.8. Different HERWIG samples as well as both PYTHIA
samples are indistinguishable for x1,2 > 0.8, where PYTHIA reproduces the data whereas
HERWIG is above the data. In the domain of x1,2 < 0.7 (where double-resolved events
dominate) PYTHIA is close to the data (especially the sample with SaS 1D) while HERWIG
jets are above (SUE=0) or below (SUE=0.3) the data. HERWIG SUE=0.2 is closest to the
data in this region.
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Figure 6.15: Uncorrected jet shapes. Comparison of jet shapes for data jets (solid) with
Monte Carlo models PYTHIA and HERWIG for dijet events with 5 < ET1,2

< 7 GeV (left)
and 7 < ET1,2

< 15 GeV (right). Statistical errors are shown.

6.3 Extraction of differential cross sections

The aim of this thesis is to present differential cross sections for dijet production corrected
for detector effects. In this section the procedure is described in detail.
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6.3.1 The unfolding procedure

Due to the effects of smearing, efficiency and final acceptance of the detector measured
distributions are in general different from the true ones. The unfolding procedure attempts
to find an underlying distribution of the physical quantities on the hadron level which would
be observed in the detector as a distribution consistent with the data.

From the mathematical point of view it is a deconvolution problem. A true distribution
f(x) is sought for which a measured distribution g(y) is known. The function g(y) is a sum
of f(x) convoluted with a detector response function A(x) and additional background b(y).

g(y) =
∫

x
A(x)f(x) + b(y) (6.4)

In the following the discussion of possible solutions of the deconvolution will be restricted
to a discrete case

yi =
∑

Aijxj + bi (6.5)

Several methods were developed to cope with this problem.

• A naive approach is to find a solution by vector algebra. If the binning is equal for x
and y one can try to evaluate

x = A−1(y − b) (6.6)

This approach yields rarely good results for two reasons. As the matrix elements are
subject to statistical fluctuations there is no guarantee that A is a positively definite
matrix. And even if the inverse of A exists one is likely to obtain a wildly oscillating
solution of x.

• Bin-to-bin correction - applicable only if migration between bins is small and if Monte
Carlo describes data well. For each bin of the distribution the ratio between its content
on the hadron level and on the detector level is calculated. The measured distribution
is multiplied by these factors.

• Regularised unfolding methods were developed to overcome difficulties of solving Eq. (6.6)
straightforwardly. The classical tool used in many analyses of the structure functions is
the RUN [40, 41] program by V. Blobel. The regularization is based on an assumption
that the solution should have minimum curvature.

• Bayesian unfolding [42] is an iterative application of Bayes’ theorem during which from
the conditional probabilities for a given cause to produce an effect a new set of the
probabilities that an effect has its origin in a particular cause is obtained. It works for
multidimensional problems, the binning (and the domains of variables) may be different
on the detector level and on the hadron level, it can correct for large migration between
bins and last but not least the background is naturally incorporated into the procedure.
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Figure 6.17: The correlations between the detector and hadron level values of the jet trans-
verse energy ET , the fraction of the photon momentum x1 and the invariant mass W . The
z axis of the plots is in logarithmic scale as the plots are nonuniformly populated.

The unfolding method based on Bayes’ theorem was used as a primary tool to correct
measured distributions to the hadron level. Simple bin-to-bin correction was used as a
complementary method to cross check the behaviour of the unfolding program.

The reason for choosing Bayes’ method is that substantial migration of events is expected.
It is documented by Fig. 6.17 which shows the level of correlation between event variables
on the hadron level and on the detector level. Although the variables are correlated it is
evident that the migration between bins of given variables is not negligible. Another fact
which is in favour of Bayesian unfolding is that background can be treated on equal footing
with other causes. The largest source of background in this unfolding problem is not from
another physical process. It comes from two-photon processes with two jets observed on
the detector level but which did not originate from two-jet event on the hadron level or the
two jets had a lower ET the threshold above which the hadron level cross sections is to be
determined.
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The procedure is based on the Bayes’ theorem which connects the conditional probability
P (xtrue|xmeas) that a value measured in a bin of xmeas had its origin in some interval of true
value xtrue with the probability P (xmeas|xtrue) of value xtrue to produce an effect of xmeas.
In the following the true values of the variable are referred to as causes and their measured
counterparts as effects.

The conditional probability P (Ci|Ej) that the observed effect Ej comes from the cause
Ci is calculated as

P (Ci|Ej) =
P (Ej|Ci)P (Ci)

∑nC

l=1 P (Ej|Cl)P (Cl)
(6.7)

The probability P (Ej|Ci) expresses our knowledge about distortions which is the measured
quantity subject to. It is obtained from the Monte Carlo simulation, often the unfolding is
repeated with several simulations and the differences between results are used to estimate
the systematic error of the unfolding. The sum runs over all causes from 1 to nC . Number
of causes typically corresponds to the number of bins in the histogram of the distribution on
the hadron level, however additional causes can be allocated for background.

The distribution of the initial probability of the causes P (Ci) is chosen according to
the physical model of the process or can be taken as a uniform distribution if no a-priori
information is known. The influence of the choice of the initial probability has to be studied
and accounted for in the estimation of the systematic error of the unfolding.

The number of events n(Ci) in the i-th bin of the distribution on the hadron level is given
by

n(Ci) =
nE
∑

j=1

n(Ej)P (Ci|Ej) (6.8)

as a sum of number of events in the j-th bin on the detector level multiplied by the conditional
probability P (Ci|Ej) that the observed effect Ej comes from the cause Ci. The number of
effects is denoted by nE.

The procedure is iterative

1. The smearing matrix of P (Ej|Ci) is calculated and the initial probabilities P0(Ci) are
chosen.

2. Formula (6.7) is used to calculate P (Ci|Ej) and subsequently Formula (6.8) gives n(Ci).

• if n(Ci) differs from the previous estimation by less than ∆χ2 the unfolding has
converged.

• otherwise n(Ci) is used to update P (Ci) and the algorithm repeats the step 2.

The evaluation of the errors is discussed in Appendix B.1.
The unfolding was applied in the following manner. The number of effects was greater

than the number of causes (nC = 18 and nE = 50). One additional cause was allocated for
generalised background events. These are events from the two-photon interactions which are
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EDL
T [GeV] MC sample HL-DL+ HL+DL- HL+DL+

PYTHIA SaS 1D 37 29 34
PYTHIA SaS 2D 44 25 304

HERWIG SUE=0.2 29 33 38

PYTHIA SaS 1D 15 53 32
PYTHIA SaS 2D 17 53 305

HERWIG SUE=0.2 11 60 29

PYTHIA SaS 1D 7 71 22
PYTHIA SaS 2D 8 72 206

HERWIG SUE=0.2 5 77 18

Table 6.1: Choice of the EDL
T cut for EHL

T = 5 GeV. For variable EDL
T cut the percentage

of events in different event classes is given. The symbol HL+ (DL+) denotes that there are
two or more jets with ET bigger than the cut found on the hadron (detector) level. Events
without two reconstructed jets above the ET cut are denoted by HL- (DL-).

seen as dijet event in the kinematical range of signal events on the detector level but which
are outside the kinematical range on the hadron level or which have less than two jets on
the hadron level. The kinematical ranges were chosen

5 GeV < EHL
T1,2

< 16 GeV, |ηHL
1,2 | < 1.8, 0 ≤ xHL

1,2 ≤ 1 for the hadron level

5 GeV < EDL
T1,2

< 16 GeV, |ηDL
1,2 | < 2, 0 ≤ xDL

1,2 ≤ 1 for the detector level

The range of ET on the detector level was chosen to be optimal from the point of view
of minimum systematic errors of the unfolding. This is illustrated by Table 6.1 which col-
lects fractions of events in three categories denoted by HL-DL+,HL+DL- and HL+DL+.
HL+DL+ stands for events which are considered signal events both on the hadron level and
on the detector level, i.e. there are two jets in the kinematical range of η and above the EHL

T

(EDL
T ) on the hadron level (on the detector level). HL-DL+ are events which have two jets

above EDL
T on the detector level but there are less than two jets above EHL

T on the hadron
level. Analogously HL+DL- stands for events with two jets on the hadron level and no dijet
signal on the detector level. For each Monte Carlo sample the percentage of events falling
into these categories is given for three values of EDL

T . For EDL
T = 4 GeV there is a sizeable

difference in the fractions of events which would be reflected in different normalisation of
unfolded distributions. The unfolding with ET cuts EDL

T > 4 GeV and EHL
T > 5 GeV was

carried out for testing purposes and is shown for illustration in Fig. B.6.

The probabilities P0(Ci) were initialised from the true distribution of given variable in
the Monte Carlo sample. The actual code used for data unfolding is available as a general
purpose C++ library. It can be downloaded from [44].
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Figure 6.18: The unfolded distributions of dσ/dη. The statistical errors as discussed in
Appendix B.1 are shown.
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Figure 6.20: The same as Fig. 6.18 but for dσ/dx.

The unfolded distributions obtained using the three Monte Carlo samples are shown
in Fig. 6.18-6.20. The statistical errors of the unfolding were calculated according to Ap-
pendix B.1. Control plots related to the unfolding procedure are given in B.2.
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Chapter 7

Results

The inclusive dijet cross sections in the region ET1,2
> 5 GeV and |η1,2| < 1.8 are presented

in Fig. 7.1 - Fig. 7.3 and Tables A.1- A.3. The cross sections are fully corrected to the hadron
level using the Bayesian unfolding method. The results are averages of the unfolded distri-
butions obtained with PYTHIA SaS 1D and HERWIG GRV. The statistical and systematic
errors are shown separately in the plots.

• The statistical errors, shown as error bars, come from those of measured distributions
and from the limited statistics of the Monte Carlo samples used for the correction.
Correlations between bins are taken into account. The calculation of statistical errors
is addressed in Appendix B.1.

• The largest contribution to the systematic errors comes from the difference between
Monte Carlo samples used for the unfolding. As the systematic error half of the
difference between the results unfolded with PYTHIA SaS 1D and HERWIG GRV was
taken. The shadow area in the plots represents statistical and systematic errors added
in quadrature. This determination of the systematic errors is perhaps conservative
because PYTHIA SaS 1D describes the data better than HERWIG GRV.

The background from other physical processes discussed in section 6.1 is small with
respect to the systematic errors originating from unfolding with different Monte Carlo
samples and is therefore neglected.

The measured differential cross sections are confronted with normalised predictions of LO
QCD Monte Carlo event generators. The comparison with NLO QCD parton level calcula-
tions [45] is left for future work. The following differential cross sections were measured:

• dσ2j/dη1,2

The result is well described by all three Monte Carlo samples. The statistical errors
are less than 10% over all η region, the systematic error is largest around η = 0 where
it accounts for 18%.
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Figure 7.1: The corrected differential cross section dσ/dη for dijet production. The error
bars correspond to the statistical errors. The systematic errors combined with statistical
errors are denoted by the shadow area. The result is presented together with the normalised
curves of Monte Carlo event generators.

• dσ2j/dET1,2

The distribution is well reproduced by PYTHIA SaS 1D. Both PYTHIA SaS 2D and
HERWIG GRV predictions drop faster with increasing ET than the data. Statistical
errors are less than 10% and the maximum systematic error is 16% in the lowest ET

bin.

• dσ2j/dx1,2

In contrast with all other observation PYTHIA SaS 1D gives the worst description of
data, PYTHIA SaS 2D and HERWIG GRV reproduce the shape of dσ2j/dx1,2 better
for small and large x, but neither Monte Carlo sample gives satisfactory description of
the data in the whole region 0 < x < 1. While the statistical errors are below 5%, the
systematic errors are large, in particular around x = 0.3 where it accounts for 35%.

We observe that the corrected distributions of dσ2j/dη1,2, dσ
2j/dET1,2

and dσ2j/dx1,2 have
different shapes than their counterparts on the detector level shown in Fig. 6.11-6.13 and
that the agreement between the data and Monte Carlo is worse on the hadron level than
on the detector level. This comes from the fact that during the unfolding the distributions
are corrected also for the events unseen in the detector which makes the comparison on the
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Figure 7.2: The same as Fig. 7.1 but for dσ/dET . Statistical errors are smaller than the
symbol size.
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Figure 7.3: The same as Fig. 7.1 but for dσ/dx. Statistical errors are shown where larger
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Figure 7.4: Differential cross-section dσ2j/d|η| for dijets ET > 5GeV. DELPHI measurement
with statistical errors is in shadowed area spanning between the results of unfolding obtained
with PYTHIA SaS 1D and HERWIG GRV. Dashed crosses are OPAL result at

√
see =

161− 172 GeV (statistical and systematic errors combined). An extrapolation of OPAL
result to higher energy is based on HERWIG simulation. It is shown as triangles without
error bars, its relative error is the same as for the OPAL result.

hadron level more demanding. Even the best of the three Monte Carlo samples PYTHIA
SaS 1D which has very good agreement with data on the detector level, fails to reproduce
the hadron-level distribution of x1,2.

Comparison of these results with other experiments can not be done straightforwardly
as the measurements were carried out in different kinematical regions and also the choice of
other variables and other details of the presentation of results differs. The distribution of
dσ2j/dη in the same region ET1,2

> 5 GeV has been measured by OPAL [23]. We compared
our preliminary measurement with this result in [1] and the corresponding plot is shown
in Fig. 7.4. The results were found to be in agreement, however it must be noted that
the comparison relies on the rescaling factor σ2j(198 GeV)/σ2j(166 GeV) obtained from
HERWIG Monte Carlo. Our present result is not shown in the plot, it is slightly higher
(the maximum difference is 10% at |η| = 0.3) than the preliminary result due to refined
run-quality requirements.

The corrected jet profiles are shown in Fig. 7.5. In this case the jet profiles were corrected
using bin-to-bin correction factors obtained from PYTHIA SaS 1D, and HERWIG GRV, one
half of the difference between the two results was used to establish systematic error. The
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experimental errors coming from the track measurement errors are shown as error bars. The
shadow area represents experimental and systematic errors added in quadrature.

The comparison of the corrected jet profiles with Monte Carlo shows good agreement
between data and HERWIG GRV for both double-resolved and direct events. PYTHIA
SaS 1D describes well the domain of direct events. PYTHIA SaS 1Djet profiles tend to
be lower than the data for jets predominantly of double-resolved interactions, this leads
to a discrepancy between data and PYTHIA SaS 1D in ∆φ which might deserve further
investigation.
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Figure 7.5: Jet profiles in ∆η and ∆φ corrected to the hadron level. The shadow band
represents combined experimental and systematic errors. Predictions of PYTHIA SaS 1D
and HERWIG GRV are shown as histograms. The same selection of |η| < 1 and 5 < ET < 7
was used both for detector and hadron level jets. Upper plots are jet profiles for events with
x1,2 < 0.7 (dominated by double-resolved interactions) and bottom plots are for x1,2 > 0.8
(dominated by direct photon interactions).



Chapter 8

Conclusion

In this thesis the first analysis of the large-ET dijet production in two photon collisions
obtained with the DELPHI detector at LEP2 is presented. The inclusive differential cross
sections dσ2j/dη, dσ2j/dET and dσ2j/dx were measured in the kinematic range ET ≥ 5 GeV,
| η |≤ 1.8 and the results compared with LO Monte Carlo event generators PYTHIA (using
SaS 1D and SaS 2D as parameterisation of the photon PDF) and HERWIG (using GRV-G
LO).

The data were fully corrected to the hadron level using the Bayesian unfolding method.
The errors are dominated by the systematic error resulting from the dependence of this
unfolding procedure on the Monte Carlo used.

The data are somewhat above their predictions in magnitude, which is not surprising for
LO Monte Carlo event generators, but also the shapes of the distributions are not reproduced
quite satisfactorily. Overall the best description of the data is obtained with PYTHIA Monte
Carlo using the SAS 1D PDF of the photon, but even it fails to describe one of the basic
distributions, namely that of momentum fraction x1,2.

An important part of the analysis concerns the comparison of measured transverse energy
activity with Monte Carlo results. Jet profiles as well as the transverse energy flow outside
the jets were employed in order to tune in both Monte Carlo generators the parameters
governing the soft collision accompanying the hard parton scattering. Good description of
these quantities is important because the soft particles provide pedestals under the jets and
thus influence their properties. Whereas the default setting of pmi

T in PYTHIA leads to very
good agreement with data, the analogous parameter SUE in HERWIG required some tuning
and the value SUE=0.2 was found optimal. For the transverse activity outside the jets the
overall agreement with data is best for PYTHIA with SAS 1D. Interestingly, but perhaps
not surprisingly, PYTHIA with SAS 1D describes very well also the energy flow inside the
jets as quantified by the jet shapes.

The differences in the kinematic regions as well as experimental procedures employed in
the extraction of measured cross sections prevent a direct comparison with the results of
OPAL experiment. Nevertheless, we have made a rough estimate of these differences and
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have found our results consistent with those in [23].



Appendix A

Tables

η1,2 dσ2j/dη1,2 [pb] stat. [pb] syst. [pb]

-1.7 15.8 ±1.2 ±1.3
-1.5 16.2 ±1.1 ±1.3
-1.3 18.6 ±1.2 ±1.7
-1.1 18.2 ±1.2 ±2.2
-0.9 19.5 ±1.2 ±2.6
-0.7 20.3 ±1.2 ±2.0
-0.5 21.3 ±1.2 ±2.2
-0.3 22.1 ±1.3 ±2.4
-0.1 22.1 ±1.3 ±3.7
0.1 21.2 ±1.3 ±3.0
0.3 22.6 ±1.3 ±2.8
0.5 22.1 ±1.3 ±3.0
0.7 21.4 ±1.3 ±2.3
0.9 19.7 ±1.2 ±2.2
1.1 18.8 ±1.2 ±1.9
1.3 17.4 ±1.1 ±1.4
1.5 15.6 ±1.0 ±1.1
1.7 17.2 ±1.2 ±0.8

Table A.1: The differential cross section dσ2j/dη1,2
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ET1,2
[GeV] dσ2j/dET1,2

[pb/GeV] stat. [pb/GeV] syst. [pb/GeV]

5.31 25.7 ±0.6 ±4.1
5.92 20.0 ±0.4 ±2.8
6.53 15.6 ±0.3 ±1.9
7.14 12.1 ±0.2 ±1.3
7.75 9.42 ±0.17 ±0.8
8.36 7.37 ±0.14 ±0.51
8.97 5.81 ±0.11 ±0.29
9.58 4.64 ±0.10 ±0.16
10.19 3.75 ±0.09 ±0.08
10.81 3.06 ±0.08 ±0.03
11.42 2.51 ±0.07 ±0.01
12.03 2.11 ±0.07 ±0.04
12.64 1.80 ±0.07 ±0.02
13.25 1.55 ±0.07 ±0.04
13.86 1.34 ±0.07 ±0.05
14.47 1.22 ±0.08 ±0.09
15.08 1.08 ±0.08 ±0.07
15.69 0.97 ±0.09 ±0.11

Table A.2: The differential cross section dσ2j/dET1,2
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x1,2 [GeV] dσ2j/d1,2 [pb] stat. [pb] syst. [pb]

0.027 31.2 ±1.4 ±0.55
0.083 76.1 ±2.2 ±13
0.138 80.0 ±2.2 ±17
0.194 70.8 ±1.9 ±19
0.25 61.3 ±1.6 ±20
0.305 55.1 ±1.5 ±19
0.361 49.7 ±1.3 ±16
0.416 42.1 ±1.1 ±11
0.472 33.5 ±0.88 ±4.6
0.527 28.0 ±0.73 ±0.25
0.583 30.7 ±0.78 ±0.53
0.638 47.5 ±1.2 ±6.7
0.694 79.7 ±1.8 ±16
0.75 122 ±2.6 ±25
0.805 161 ±3.4 ±27
0.861 175 ±3.8 ±13
0.916 144 ±3.8 ±9.6
0.972 68.7 ±3.3 ±19

Table A.3: The differential cross section dσ/dx1,2
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Appendix B

The unfolding procedure

B.1 Evaluation of the errors

The statistical errors which are presented on the unfolded results were evaluated according
to the following approach.

The number of the expected causes in the bin i is expressed

n(Ci) =
nE
∑

j=1

Mijn(Ej) (B.1)

The statistical errors come from two sources. First there are the statistical errors of the
measured numbers n(Ej) and then the errors coming from the evaluation of the unfolding
matrix Mij.

Mij =
P (Ej|Ci)P (Ci)

[
∑nE

l=1 P (El|Ci)] [
∑nC

l=1 P (Ej|Cl)P (Cl)]
(B.2)

n(Ej) is a multinomial distribution where the parameter n is the estimated number of true
events Ntrue. The unfolding matrix has its uncertainities in the distribution of the initial
probabilities. This error is included in the systematic error. Then P (Ej|Ci) have statistical
errors as they are determined from the Monte Carlo with limited number of events. The
systematic errors of P (Ej|Ci) are estimated by unfolding with several Monte Carlo models.
Correlations between n(Ci) are expected as their values are determined by several n(Ej) and
P (Ej|Ci). The covariance matrix V which takes into account both n(Ej) and Mij is

Vkl = Vkl(n(E)) + Vkl(M) (B.3)

The first term Vkl(n(E)) can be written

Vkl(n(E)) =
nE
∑

j=1

MkjMljn(Ej)

(

1 − n(Ej)

Ntrue

)

−
nE
∑

i,j=1,i6=j

MkiMlj
n(Ei)n(Ej)

Ntrue
(B.4)
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while the following holds for Vkl(M)

Vkl(M) =
nE
∑

i,j=1

n(Ei)n(Ej)Cov(Mki,Mlj) (B.5)

where

Cov(Mki,Mlj) =
∑

ru,su

δMki

δP (Er|Cu)

δMlj

δP (Es|Cu)

× Cov [P (Er|Cu), P (Es|Cu)] (B.6a)

δMki

δP (Er|Cu)
= Mki

[

δkuδri

P (Er|Cu)
− δku

εu
− δriMuiεu

P (Ei|Cu)

]

(B.6b)

Cov [P (Er|Cu), P (Es|Cu)] =

=
1

nu

P (Er|Cu) [1 − P (Er|Cu)] (r = s)

= − 1

nu

P (Er|Cu)P (Es|Cu) (r 6= s) (B.6c)

where nu is the number of events generated in the cell Cu for evaluation of the smearing
function.

B.2 Tests of the unfolding problem

In this section we present several plots to show that the unfolding procedure is stable and
its results are understood. The unfolding was investigated from a number of views:

1. All the unfolded distributions were convoluted with the smearing matrix and the folded
distributions agreed with the measured ones.

2. Mutual unfolding of one Monte Carlo sample with another was carried out. The
unfolding of the detector level distribution of PYTHIA SaS 1D with PYTHIA SaS
2D and HERWIG GRV is given in Fig. B.1-B.3. The results agree with the true
distributions of η, ET and x.

3. The unfolding with Bayes’ approach was cross-checked with bin-to-bin corrections
(Fig. B.4). The normalization of results is close for both methods. Bin-to-bin cor-
rections exhibit less smooth results than the unfolding.

4. The influence of the binning is studied in Fig. B.5. The unfolding with larger bins is
consistent with the present results.
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Figure B.1: dσ2j/dη of PYTHIA SaS 1D unfolded with PYTHIA SaS 2D and HERWIG
GRV. The statistical errors are shown as error bars, the shadow area is the combination of
statistical errors and of the systematic errors as described in Chapter 7.
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Figure B.3: The same as Fig. B.1 but for dσ2j/dx.

5. The demonstration of larger systematic effects in case of EDL
T cut lower than 5 GeV is

in Fig. B.6. It is a complementary plot to the Table 6.1 and its discussion.

6. The convergence of the unfolding is studied in Fig. B.7. The unfolded distribution
are shown after 3 steps, after 5 steps and after a convergence is reached when ∆χ2

between two subsequent steps changes less than a certain limit ∆χ2
lim = nC/100. The

procedure converges quickly, typical number of steps is below 10.

7. The one-dimensional unfolding was also compared with projections of two-dimensional
unfolding in ET − x and ET − η. The results of both approaches agree.
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Figure B.4: Unfolded distributions of η, ET and x (solid line histograms) are presented with results of bin-to-bin
correction (dashed histograms). The histograms of the same colour belong to one Monte Carlo sample.
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Figure B.5: Control plots for the unfolding procedure. The unfolded distributions of η, ET and x (solid line
histograms) are shown together with the results of the unfolding procedure carried out with the same Monte Carlo
models but with larger binning (shown as crosses).
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Figure B.6: The unfolding with EDL
T > 5 GeV (histograms) is shown together with the unfolding with lower EDL

T

cut (EDL
T > 4 GeV, crosses).
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Figure B.7: Convergence of the unfolding procedure. The results of the unfolding after 3, 5 and converged
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