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Confronting the QCD photon structure with recent data
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• Concept of photon structure

• Basic facts and formulae

• Semantics: plea for a common language

• PDF of the photon

• QCD effects in data on interactions of quasireal photons

• Virtual photon structure: why

• QCD effects in data on interactions of virtual photons?

• Resolved longitudinal photon: why not?

Details in JHEP04(2000)007; PRD 62 (2000), 114025; PL B488 (2000),
289; EPJ C16 (2000), 471, EPJ C18 (2001), 723
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Concept of photon structure

All the present knowledge of the structure of the photon comes from experiments
at the ep and e+e− colliders, where the incoming leptons act as sources of
transverse and longitudinal virtual photons
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(Quasi)real photon: P 2 � ΛQCD

Small masses of light quarks implies nonperturbative QCD effects which
necessitate the introduction of the concept of PDF of the photon.
Expected to have (almost) the same properties as truly real photon.

Virtual photon: smooth transition from the essentially nonperturbative to
the perturbative region for P 2 � ΛQCD, in practice P 2 � 2 GeV2.
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Basic facts and formulae

PDF of the photon satisfy the system of inhomogeneous evolution equations

dΣ(x, M)
d lnM2

= δΣkq + Pqq ⊗ Σ + PqG ⊗ G,
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where δNS ≡ 6nf
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The structure function F γ
2 (x, Q2) is given as

1
x

F γ
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〈e2〉δΣCγ + 〈e2〉G(M) ⊗ CG(Q/M),

where Cq, CG, Cγ can be expanded in powers of αs(µ)
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where κ(x) ≡ 8x(1 − x) − 1. C0
γ as well as k

(0)
q = (x2 + (1 − x)2) come from

pure QED, which provides the lowest order contribution to F γ
2 in the form
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QED distributions functions of the real photon

dσ(e−γ → e−qq)
dxdQ2

=
2πα2

xQ4
F γ
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(
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)
where, denoting κ(x) = 8x(1 − x) − 1,
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can be separated it into two parts
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,

the latter coming from region of almost collinear γ → qq splitting and defining
the QED parts of quark and gluon distribution functions of the photon

qQED(x, M) ≡ α

2π
3e2

qk
(0)
q (x) ln

M2(1 − x)
m2

q

+ 2x(1 − x), G(x, M) ≡ 0.
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The presence of the inhomogeneous terms implies that their general solutions can
be written as a sum

D(x, M) = DPL(x, M, M0) + DHAD(x, M, M0).

of a particular solution of the full inhomogeneous equations and a general
solution, called hadron-like (HAD), of the corresponding homogeneous ones. A
subset of the former resulting from the resummation of contributions of diagrams
describing multiple parton emissions off the primary QED vertex γ → qq and
vanishing at M = M0, are called point-like (PL).
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qPL
NS(n, M0, M) =
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where the presence of αs in the denomina-
tor is often interpreted as evidence that

qPL
NS(n, M0, M) ∝ α

αs

but this is untenable because switching QCD off by sending ΛRS → 0 for fixed
M, M0 reduces the above expression to the purely QED contribution

qPL
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2π
k
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NS(x) ln
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M2
0

.
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Basic features of hadronlike and pointlike parts of photonic PDFs

• The separation inherently ambiguous.

• Only their sum relevant for calculation of cross sections of hard processes

• Separation important for multiple interactions (PYTHIA).

• Both parts describe QCD effects,

• but exhibit different factorization scale dependence:

– hadron-like part entirely due to QCD effects, whereas

– point-like part dominated by QED splitting γ → qq.

• as well as virtuality dependence

– pointlike: slow logarithmic decrease

– hadronlike: fast powerlike decrease

• Both

– generate gluons

– rise at low x
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Factorization scale dependence
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Virtuality dependence

For P 2 � 2 GeV2 only the pointlike parts of PDF relevant!
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Semantics: plea for a common language

Agreement on semantics is a prerequisite for any meaningful discussion of the
photon structure. I prefer the terminology advocated by GRV:

• Direct & resolved photon

• Pointlike & hadronlike contributions

• QED & QPM contributions

Unfortunately, different names are used for the same content

• Bare photon instead of direct photon contribution

• Anomalous part instead of pointlike part of photonic PDF

• VMD part instead of hadronic part of photonic PDF

and even worse, one notion is used in different meanings

• Pointlike and hadronlike instead of direct and resolved contribution

• LO and NLO interpreted differently than for Re+e−

12
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Example of resulting confusion: OPAL papers on dijets, F γ
2 and F γ

2c:

dijets [EPJC 10 (1999), 547]: see just resolved contribution but says
“photons appear resolved through its fluctuations into hadronic components”

Fγ
2 [EPJC 18 (2000), 15]: see dominant hadron-like contribution but claims
“photon must contain a significant hadron-like component at low x.”

Fγ
2c [EPJC 16 (2000), 579]: see excess over hadron-like contribution but claims
“the measurement suggests a nonzero hadron-like component of F γ

2,cc”
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PDF of the photon

Transverse photon

Glück, Reya, Vogt (1992): P 2 = 0, HAD+PL

Glück, Reya, Stratmann (1995): P 2 � M2/5, HAD+PL

Schuler, Sjöstrand (1995): P 2 � M2, HAD, PL separately

Glück, Reya, Schienbein (1999): improved GRS (1995)

other less often used: AFG, WHIT, GS

new: Cornet, Jankowski, Krawczyk, Lorca (2003): P 2 = 0, heavy quarks

Longitudinal photon

Friberg, Sjöstrand (2000): rescaled DγT
p

Chýla (2000): LO QCD evolution “dynamically” generated from QED
contribution, P 2 � M2.
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QCD effects in interactions of quasireal photons

• Scaling violations in F γ
2 (x, Q2)

• Magnitude of F γ
2 (x, Q2) at low x

• Jets in γp collisions

• Jets in γγ collisions

• Heavy quarks in γp collisions

• Heavy quarks in γγ collisions
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# of data points

model N 205 182 - no TPC

χ2 χ2/DOF χ2 χ2/DOF

SaS1D 6 657 3.30 611 3.47

GRS LO 0 499 2.43 366 2.01

FFNSCJKL 3 442 2.19 357 1.99

CJKL 3 406 2.01 323 1.80
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Fits to PDF of the photon

• Still poor fit and

• large differences between extracted PDF at
moderate x
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Data set N MRST MRST MRST MRST

0.117 0.121 J

H1 ep 400 382 386 378 377

ZEUS ep 272 254 255 258 253

BCDMS µp 167 193 182 208 183

BCDMS µd 155 218 211 226 219

NMC µp 126 134 143 127 135

NMC µd 126 100 108 95 100

SLAC ep 53 66 71 63 67

SLAC ed 54 56 67 47 58

E665 µp 53 51 50 52 51

E665 µd 53 61 61 61 61

CCFR F νN
2 74 85 88 82 89

CCFR F νN
3 105 107 103 112 110

NMC n/p 156 155 155 153 161

E605 DY 136 232 229 247 273

Tevatron Jets 113 170 168 167 118

Total 2097 2328 2346 2345 2337

Fits to PDF of the proton
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F γ
2 (x, Q2) at low x
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“small x measurements imply that photon must contain a dominant hadron-like component at low x”
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fγ,eff (xγ) = [q(xγ) + q(xγ) + (9/4)g(xγ)]

fp,eff (xp) = [q(xp) + q(xp) + (9/4)g(xp)]
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Jets in direct photoproduction
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Data in very good agreement with predictions of perturbative QCD
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Jets in resolved photoproduction

ZEUS
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“The data fall less steeply with increasing transverse energy than do the NLO QCD predictions, and show
sensitivity to the parton densities of the photon. Neither the AFG-HO nor the GRV-HO parameterizations
convoluted with the NLO matrix elements fully describe all features of the data.” 24
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Jets in γγ collisions
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Good agreement of OPAL data with
NLO calculations using GRV HO PDF
in the region dominated by the single
resolved photon contribution, where
soft underlying collision (realized by
multiparton interaction in PYTHIA)
does not occur.
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but significant disagreement with
NLO calculations in the region domi-
nated by the double resolved photon
contribution, where multiparton inter-
action is important.

Implications for ep collisions at low ET :
avoid processes influenced by soft
underlying collisions!
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bb production in ep collisions
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Clear excess over PQCD at Q2 = 0 but data not quite consistent at high Q2
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bb production in γγ collisions

Comparison with L3 and OPAL

DELPHI
• New DELPHI data suggest striking

agreement between the three LEP ex-
periments

• and dramatic disagreement of their
data with PQCD

• despite the fact that this process is ex-
pected to be the cleanest test of PQCD

• my view:
current calculations are not truly NLO
QCD because they do not include order
α2α2

s direct photon contribution.
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QCD analysis of σ(γγ → QQ)

In the conventional approach the NLO QCD approximation is defined by
taking into account the first two terms in expansions of direct, as well as
single and double resolved photon contributions

σdir = σ
(0)
dir + σ

(1)
dirαs(µ) + σ

(2)
dir (M, µ)α2

s(µ) + σ
(3)
dir (M, µ)α3

s(µ) + · · · ,
σsr = σ(1)

sr (M)αs(µ) + σ(2)
sr (M, µ)α2

s(µ) + σ(3)
sr (M, µ)α3

s(µ) + · · · ,
σdr = σ

(2)
dr (M)α2

s(µ) + σ
(3)
dr (M, µ)α3

s(µ) + · · ·

to the total cross section

σ(γγ → QQ) = σdir + σsr + σdr.

where σ
(0)
dir comes from pure QED and equals

σ
(0)
dir = σ0

[(
1 +

4m2
Q

s
− 8m4

Q

s2

)
ln

1 + β

1 − β
− β

(
1 +

4m2
Q

s

)]
,
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Direct photon contribution to σ(γγ → QQ)

At the order α2α2
s diagrams with light quarks appear and we can distinguish (to

all orders) three classes of contributions, differing by the charge factor CF :

Class A: CF = e4
Q. Comes from diagrams in which both primary photons

couple to heavy quarks or antiquarks.

Class B: CF = e2
Qe2

q. Comes from diagrams in which one of the primary
photons couples to a heavy and the other to a light quark-antiquark pair.

Class C: CF = e4
q. Comes from diagrams in which both photons couple to

light qq pairs.
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• For classes B and C the corresponding diagrams involve (and massless light
quarks) initial state mass singularities that must be subtracted and put
into the corresponding PDF of the photons.

• Because of different charge factors CF classes A, B and C do not mix under
renormalization of αs and factorization of mass singularities.

• The order α2α2
s direct photon contributions of all three classes are

needed for theoretical consistency:

A: for the calculation of class A direct photon contribution (which does not
mix with any other) to be performed in a well-defined RS

B: For factorization scale invariance of the sum of direct and resolved
photon contributions.

C: dtto.

• Classes B,C can be defined also for the PL parts of single and class C for
PL parts of double resolved photon contributions.

• Classes A,B,C can be treated separately as they do not mix.
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Operational definition of the virtual photon: P 2 � 1 GeV2 � Λ2
QCD. In this

region the concept of resolved virtual photon can be discarded but there
are good reasons for using it provided the photon “lifetime” is much
longer than the interaction time, i.e. if P 2 � M2.

cross section contains singular terms:∫ M2

τmin

dτ

[
f(x)

τ
+

g(x)m2
q

τ2
+

h(x)P 2

τ2

]

where

τmin = xP 2 +
m2

q

(1 − x)

After integration we get in units of 3e2
qα/2π

qQED(x, m2
q, P

2, M2) = f(x) ln
(

M2

τmin

)
+

[
−f(x) +

g(x)m2
q + h(x)P 2

τmin

] (
1 − τmin

M2

)

fT (x) = x2 + (1 − x)2, gT (x) =
1

1 − x
, hT (x) = 0,

fL(x) = 0, gL(x) = 0, hL(x) = 4x2(1 − x).
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This expression vanishes for τmin → M2 and simplifies for τmin � M2

qQED(x, m2
q, P

2, M2) = f(x) ln
(

M2

xP 2 + m2
q/(1 − x)

)
−f(x)+

g(x)m2
q + h(x)P 2

xP 2 + m2
q/(1 − x)

.

x(1 − x)P 2 � m2
q ⇒: real photon, only γT ,

qQED(x, m2
q, 0, M2) = (x2 + (1 − x)2) ln

(
M2(1 − x)

m2
q

)
+ 2x(1 − x)

x(1 − x)P 2 � m2
q ⇒: both γ∗

T and γ∗
L

qQED
T (x, 0, P 2, M2) =

(
x2 + (1 − x)2

)
ln

(
M2

xP 2

)
+ 2x(1 − x) − 1

qQED
L (x, 0, P 2, M2) = 4x(1 − x)

The above terms come from the collinear region and are thus of partonic
nature. There are regular terms, which also yield constant terms.

QCD: adds further parton emissions off the primary qq pair.

QCD-improved PDF of γ∗: a way how to include part of higher order
perturbative corrections that have clear partonic interpretation.
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Has the QCD renormalization-group-improved par-

ton content of virtual photons been observed?

M. Glück, E. Reya, and I.Schienbein (PRD D63 (2001), 074008)
It is demonstrated that present e+e- and DIS ep data on the structure of the
virtual photon can be understood entirely in terms of the standard naive
quark-parton model box approach. Thus the QCD renormalization group (RG)
improved parton distributions of virtual photons, in particular their gluonic
component, have not yet been observed. The appropriate kinematical regions for
their future observation are pointed out as well as suitable measurements which
may demonstrate their relevance.

Still true? Not quite!

What to look for: deviation of data from the NLO direct photon QCD
calculations as these include the QED part of resolved γ∗

T and γ∗
L.

H1 and ZEUS data on dijet production in low Q2 region provide evidence for
effects beyond purely QED structure of the photon.
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Order αα2
s and αα2

s JETVIP calculations

NLO QCD calculations well approximated by the sum of LO direct and LO
resolved contributions evaluated with QED distributions of virtual photons.
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Resolved longitudinal photons: why not?
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• Data on F γ,QED
2 (x, P 2, Q2) for

Q2 � P 2 suggests it,

• its contribution has clear par-
tonic interpretation and

• the H1 data seem to need it as
well.

• But it is not mandatory.
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QED contribution:
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QCD evolution of γ∗
L similar to that of hadrons:

M2 = 3, 10, 100, 1000, 10000 GeV2 in decreasing order, dashed line corresponds to QED
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