The relevance of $\gamma_{\mathbf{L}}^*$ in hard collisions of virtual photons

Jiří Chýla, Marek Taševský Institute of Physics, Prague

- Virtual photon and its "structure"
- PDF of γ_L^* in QED
- QCD improved PDF of γ_L^*
- Relevance of γ_L^* in hard collisions
- Future
- Conclusions

Related work:

Contributions of γ_L^* :

- J. Ch., M. T.: Eur. Phys. J. C 16 (2000), hep-ph/0003300, phenomenology with γ_L^{QED}
- J. Ch.: Phys. Lett. B, QCD corrections to QED formulae for PDF of γ_L^*
- J. Ch., M. T.: in preparation, partly in this talk phenomenology with QCD improved PDF of γ_L^*

General aspects of virtual photon interactions:

- J. Ch., J. Cvach: in Future Physics at HERA
- J. Ch., M. T.: in MC Generators for HERA, hep-ph/9905444
- J.Ch., M. T.: in PHOTON'99, hep-ph/9906552
- J. Ch., M. T.: hep-ph/9912514,
- *M. Taševský:* PhD Thesis, H1 data vs NLO JETVIP calculations including the resolved γ_T^*
- C. Friberg, T. Sjöstrand: Eur. Phys. J. C13 (2000), 151 also emphasizes the relevance of γ_L^*

Structure of the virtual photon

Data relevant to the concept of γ^* "structure"

PLUTO: 1984, $F_{\text{eff}}^{\gamma}(x, P^2, Q^2)$ for $\langle P^2 \rangle = 0.35 \text{ GeV}^2$ **H1** - dedicated analyses:

- 1. Phys. Lett. B415 (1997), 418: σ^{res} from single jets in the range $0 \le P^2 \le 49 \text{ GeV}^2$
- 2. Eur. Phys. J. C13 (2000), 397: $D_{\text{eff}}(x, P^2, Q^2)$ from dijets in the range $1.6 \le P^2 \le 80 \text{ GeV}^2$
- 3. M. Taševský's PhD Thesis: dijets vs JETVIP, NLO QCD calculations including the resolved γ_T^* contributions, $1.44 \leq P^2 \leq 25 \text{ GeV}^2$. The most detailed NLO QCD analysis of data on γ^*

H1 - several other papers $(R_2, \text{ forward jets})$ use the concept of virtual photon structure to improve the agreement of LO MC with data **ZEUS:** $r(Q^2) \equiv \sigma^{\text{res}}/\sigma^{\text{dir}}(P^2)$ for $0 \leq P^2 \leq 4 \text{ GeV}^2$, claims failure of JETVIP, **but** $r(Q^2)$ **unsuitable** for comparison with parton level QCD! **TPC/27:**, $\sigma_{tot}(\gamma\gamma^*(P^2)), 0.2 \leq P^2 \leq 60 \text{ GeV}^2$ **TOPAZ:** $\sigma_{tot}(\gamma\gamma^*(P^2)), 1 \leq P^2 \leq 37 \text{ GeV}^2$ **L3:** $F_{\text{eff}}^{\gamma}(x, P^2, Q^2)$ for $0 \leq P^2 \leq 6 \text{ GeV}^2$, exhibits very **puzzling** P^2 **dependence!!** Basic concepts and formulae

Fluxes of photons from incoming electron

$$f_{\gamma_T/e}(y, P^2) = \frac{\alpha}{2\pi} \left(\frac{2(1-y) + y^2}{y} \frac{1}{P^2} - \frac{2m_e^2 y}{P^4} \right)$$
$$f_{\gamma_L/e}(y, P^2) = \frac{\alpha}{2\pi} \frac{2(1-y)}{y} \frac{1}{P^2}, \quad P_{\min}^2 = \frac{m_e^2 y^2}{1-y}$$

The difference at **large** y crucial for separation of γ^T, γ^L Cross sections of hard collisions of virtual photons

$$\sum_{k=T,L} f_{\gamma_k/e} \otimes \sum_{i=q,\overline{q},G} f_{i/\gamma_k} \otimes \sigma_i$$

PDF f_{i/γ^k} of the photon can be written as sums of hadronic (HAD) and pointlike (PL) parts

$$f(x, P^2, Q^2) = f^{\text{HAD}}(x, P^2, Q^2) + f^{\text{PL}}(x, P^2, Q^2)$$

This separation is, however, **ambiguous**! **Pointlike part** of NS quark distribution function results from the resummation

describing QCD corrections to QED. In units of $3e_q^2\alpha/2\pi$

$$q_k^{\text{QED}} = f_k(x) \ln\left(\frac{Q^2}{xP^2 + m_q^2/(1-x)}\right) - f_k(x) + \frac{g_k(x)m_q^2 + h_k(x)P^2}{xP^2 + m_q^2/(1-x)}$$

$$f_T(x) = x^2 + (1-x)^2, \quad g_T(x) = \frac{1}{1-x}, \quad h_T(x) = 0,$$

$$f_L(x) = 0, \qquad g_L(x) = 0, \qquad h_L(x) = 4x^2(1-x)$$

$$q_T^{\text{QED}} \to (x^2 + (1-x)^2) \ln \frac{Q^2}{xP^2} + 8x(1-x) - 2, \qquad x(1-x)P^2 \gg m_q^2$$

$$q_L^{\text{QED}} = \frac{4x^2(1-x)^2P^2}{x(1-x)P^2 + m_q^2} \to 4x(1-x); \qquad x(1-x)P^2 \gg m_q^2$$

$$\rightarrow \frac{P^2}{m_q^2} 4x^2(1-x)^2; x(1-x)P^2 \ll m_q^2$$

QCD corrections **soften quarks** and **generate** gluons.

Points on γ_T^* to keep in mind:

- $\ln Q^2$ rise is a purely **QED effect!**
- **QCD** effect: the difference $[a(x) (x^2 + (1-x)^2)]$
- f^{HAD} drop with P^2 much faster than f^{PL} and for $P^2 \gtrsim 2 \text{ GeV}^2$ become practically negligible.

The concept of γ^* structure in QCD

In QCD the extent to which the effects of γ^* are included depends on particular theoretical framework adopted. Questions we have often encountered:

- a) Why to introduce the concept of γ^* structure when we have exact NLO QCD programs like **DISENT, MEPJET, DISASTER**, which dispense with this concept?
- b) Is there **any evidence** for the usefulness of this concept in available data?
- ad a) There is a **large difference** in part of the phase space accessible at HERA between the results of NLO calculations with and without the resolved γ^* contributions.
- ad b) **YES!** NLO calculations without the resolved γ^* contribution are **significantly below** the data in the region of moderate $P^2 \ll Q^2 \simeq E_T^2$ and $\eta^* \simeq 0$

Summary: *in principle* the concept of γ^* structure **need** not be introduced but *in practice* it is extremely useful as a way of approximately including part of higher order perturbative QCD corrections

Example: **J. Cvach**: Talk at DIS99:

H1 Preliminary

Factorization scale dependence and the relation between direct and resolved photon contributions:

Resolved $\gamma^*_{T,L}$ in QCD calculations

• LO MC event generators:

Contributions of γ_L^* included exactly in the **direct** channel. In the resolved one

PYTHIA: since version 6.12 $f_{\gamma_T^*/e}$ as well as $f_{\gamma_L^*/e}$ with exact kinematics at the $e\gamma^*e$ vertex and SaS PDF of γ_T^* . γ_L^* treated via **rescaling ansatz**.

HERWIG:

official version: γ_T^* only

my version: γ_L^* as well with QCD improved PDF **PHOJET:** only γ_T^*

• NLO parton level calculations:

DISENT, MEPJET, DISASTER: $\gamma_{T,L}^*$ treated exactly up to order $\alpha \alpha_s^2$, but only **unsubtracted direct** contributions taken into account **JETVIP:** includes the **resolved photon** channel with γ_T^* convoluted with cross sections up to α_s^3 recently we have added (with help from Bjorn Pötter) the **resolved** γ_L^* contributions (see below)

Resummation of diagrams

in **leading-log approximation** (i.e. in powers of $\alpha_s \ln M^2$) and similarly for quark singlet and gluons

leads for

 $m_q^2 \ll P^2 \ll M^2$

to typical hadron-like scale dependence even for the pointlike parts!

$$q_L^{\rm NS}(n, P^2, M^2) = k_L(n) \left[\frac{\alpha_s(M^2)}{\alpha_s(P^2)}\right]^{-2P_{qq}^{(0)}(n)/\beta_0},$$

where

$$k_l(x) = 12x(1-x), \qquad s \equiv \frac{\ln(M^2/\Lambda^2)}{\ln(P^2/\Lambda^2)}$$

Hadronic part of q_L^{QCD} negligible for $P^2 \gtrsim 2 \text{ GeV}^2$ Parameterization of PDF of γ_L^* available for

 $0.001 \le x \le 0.995, \quad 1 \le s \le 3.9$

Question: what is m_q or, generally, what governs the onset of PDF of γ_L^* ?

The relevance of γ_L^*

Claim: whenever the variations of contributions of $\gamma_T^*(P^2)$ with P^2 are taken into account, so **must** be those of $\gamma_L^*(P^2)$!

Illustration: at LEP one measures the combination

$$F_{\text{eff}}^{\gamma}(x, P^2, Q^2) \equiv \frac{Q^2}{4\pi^2 \alpha} \left(\sigma_{TT} + \sigma_{LT} + \sigma_{TL} + \sigma_{LL}\right)$$

The QED structure function $F_{\text{eff}}^{\text{QED}}$, measurable using $\mu^+\mu^-$ pairs, is fully calculable. For **OPAL** data the individual contributions σ_{ij} look as follows

The data clearly require the contributions of target γ_L^* . The same for L3 data.

Resolved γ_L^* in LO calculations

The relative contributions of γ_L^* depend on

- electron variables y and P^2
- jet variables E_T , η and x_{γ} .

Analytical evaluation of $F_{\text{eff}}(P^2, M^2)$ and

 $1.4 < P^2 < 2.4 \text{ GeV}^2$, 0.05 < y < 0.95, $E_T > 5 \text{ GeV}$, $-5 < \eta < 5$

×γ

 $1.4 < P^2 < 2.4 \text{ GeV}^2$, 0.05 < y < 0.95, $E_T > 5 \text{ GeV}$, $-3 < \eta < 0$

×γ

2.4<P²<4.4 GeV², 0.05<y<0.95, E_T >5 GeV, -5< η <5

2.4<P²<4.4 GeV², 0.05<y<0.95, E_T >5 GeV, -3< η <0

Message from the comparisons

In the kinematical region

$$\Lambda^2 \ll P^2 \ll Q^2$$

accessible at HERA and conventionally considered as part of **DIS** region the contributions of γ_L^* are **substantial**, particularly

- at small y,
- close to E_T threshold,
- for small x_{γ} ,
- i.e. large η

The cuts enforced by H1 and ZEUS acceptances reduce the sensitivity to contributions of γ_L^* , but in parts of accessible kinematical range they are typically $\gtrsim 50\%$ and can be identified by their

characteristic y and P^2 dependence.

Resolved γ_L^* in JETVIP calculations of dijet production at HERA

Standard formulation: γ_L^* included **exactly in direct unsubtracted calculations** (LO as well as NLO) but **not in the resolved photon** contributions. Schematically:

$$\sigma(\text{TOT}) = \sigma(\text{DIR}_{\text{uns}}) - \sigma_T(\text{PSP}) + \sigma_T(\text{RES}) - \sigma_L(\text{PSP}) + \sigma_L(\text{RES})$$

Calculations performed for asymmetric E_T cuts:

$$E_T^{(1)} \ge 7, \ E_T^{(2)} \ge 5 \ \text{GeV}$$

Nontrivial effect of introducing the concept of PDF of γ_L^* into JETVIP measured by the ratia

$$r_q^{\rm NLO} \equiv \frac{(q_L^{\rm QCD} - q_L^{\rm QED}) \otimes \sigma_q^{\rm res}(\alpha_s^2) + q_L^{\rm QCD} \otimes \sigma_q^{\rm res}(\alpha_s^3)}{\sigma^{\rm DIR + RES}(\gamma_T)}$$
$$r_G^{\rm NLO} \equiv \frac{G_L^{\rm QCD} \otimes \left(\sigma_G^{\rm res}(\alpha_s^2) + \sigma_G^{\rm res}(\alpha_s^3)\right)}{\sigma^{\rm DIR + RES}(\gamma_T)}.$$

We wanted to present first NLO JETVIP results with q_L^{QCD} and G_L^{QCD} but failed because of other duties. Hope to have them for the Proceedings.

Effects of q_L^{QED} :

Future

Experiment: ongoing analysis of **H1** dijet data (31 pb⁻¹, $1.4 \le P^2 \le 50 \text{ GeV}^2$, $0.1 \le y \le 0.9$)

E_T^{\min}	N _{tot}	1.4 - 2.4	2.4 - 4.4	4.4–10	10-25
$5~{ m GeV}$	123000	18400	25500	31800	30700
$6 { m GeV}$	80000	12300	16500	20400	20000
$7 { m GeV}$	53000	7600	11200	13000	13000
$10 { m GeV}$	17500	2400	3200	4300	4300

offers a chance to

- perform the comparison with QCD calculations in the kinematical region $P^2 \ll Q^2$ in greater detail
- identify the contributions of γ_L^* by measuring $D_{\text{eff}}^{\gamma_L}(x, P^2, Q^2)$

For the second task one has to separate γ_L^* by measuring the dependence of dijet cross sections on

- $y: \sigma_L \propto (1-y) \Rightarrow$ broad range in y necessary
- P^2 : $\sigma_L \propto P^2 \Rightarrow \mathbf{VLQ} \ (P^2 \simeq 0.1 0.2)$ vital!
- E_T : hadronic scaling violations of $q_L(x, P^2, M^2)$

Theory: detailed studies using **JETVIP** with QCD improved PDF of γ_L^*

Conclusions

- 1. The concept of **resolved** γ_L^* is phenomenologically **very useful**.
- 2. Contributions of resolved γ_L^* must be included whenever virtuality dependence of PDF γ_T^* is taken into account.
- 3. Numerically these contributions are **quite large** in parts of phase space accessible at HERA.
- 4. QCD improved PDF of γ_L^* are **available** but more theoretical work needed, in particular concerning the question of their threshold behavior.
- 5. There is a good chance to **extract** PDF of γ_L^* from recent HERA data.